Normalized defining polynomial
\( x^{21} - 9 x^{19} - 6 x^{18} - 135 x^{17} - 180 x^{16} + 993 x^{15} + 2106 x^{14} + 4887 x^{13} + 9600 x^{12} - 23031 x^{11} - 103602 x^{10} - 97025 x^{9} + 87948 x^{8} + 258951 x^{7} + 196462 x^{6} - 6804 x^{5} - 122472 x^{4} - 101808 x^{3} - 42336 x^{2} - 9408 x - 896 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[13, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(508239433358075553521104351093444483806919881916416=2^{32}\cdot 3^{22}\cdot 7^{14}\cdot 11^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $259.76$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{9} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{6}$, $\frac{1}{8} a^{15} - \frac{1}{8} a^{13} - \frac{1}{4} a^{12} + \frac{1}{8} a^{11} + \frac{1}{8} a^{9} - \frac{1}{4} a^{8} + \frac{3}{8} a^{7} + \frac{1}{8} a^{5} + \frac{1}{4} a^{4} - \frac{1}{8} a^{3} - \frac{1}{8} a + \frac{1}{4}$, $\frac{1}{64} a^{16} + \frac{1}{32} a^{15} - \frac{13}{64} a^{14} - \frac{15}{64} a^{12} - \frac{1}{32} a^{11} + \frac{5}{64} a^{10} + \frac{1}{16} a^{9} + \frac{7}{64} a^{8} + \frac{15}{32} a^{7} + \frac{29}{64} a^{6} - \frac{3}{8} a^{5} - \frac{9}{64} a^{4} + \frac{5}{32} a^{3} + \frac{19}{64} a^{2} - \frac{3}{16} a + \frac{3}{16}$, $\frac{1}{512} a^{17} + \frac{15}{512} a^{15} - \frac{35}{256} a^{14} + \frac{17}{512} a^{13} - \frac{1}{128} a^{12} - \frac{55}{512} a^{11} + \frac{61}{256} a^{10} + \frac{31}{512} a^{9} - \frac{1}{32} a^{8} + \frac{33}{512} a^{7} + \frac{119}{256} a^{6} + \frac{231}{512} a^{5} - \frac{25}{128} a^{4} - \frac{33}{512} a^{3} + \frac{119}{256} a^{2} + \frac{41}{128} a - \frac{19}{64}$, $\frac{1}{57344} a^{18} - \frac{3}{4096} a^{17} - \frac{369}{57344} a^{16} + \frac{145}{14336} a^{15} + \frac{13}{57344} a^{14} + \frac{25}{28672} a^{13} - \frac{6415}{57344} a^{12} - \frac{99}{448} a^{11} + \frac{10907}{57344} a^{10} - \frac{5267}{28672} a^{9} - \frac{137}{8192} a^{8} + \frac{279}{2048} a^{7} + \frac{2317}{8192} a^{6} + \frac{269}{4096} a^{5} + \frac{1601}{8192} a^{4} + \frac{253}{1024} a^{3} + \frac{453}{1024} a^{2} + \frac{23}{64} a - \frac{231}{512}$, $\frac{1}{458752} a^{19} - \frac{1}{114688} a^{18} - \frac{173}{458752} a^{17} + \frac{447}{229376} a^{16} - \frac{8411}{458752} a^{15} + \frac{1921}{14336} a^{14} + \frac{15995}{65536} a^{13} + \frac{33059}{229376} a^{12} - \frac{81765}{458752} a^{11} - \frac{5641}{114688} a^{10} + \frac{113053}{458752} a^{9} + \frac{7171}{32768} a^{8} + \frac{28597}{65536} a^{7} + \frac{1025}{8192} a^{6} - \frac{21219}{65536} a^{5} - \frac{4921}{32768} a^{4} + \frac{2355}{8192} a^{3} + \frac{439}{4096} a^{2} - \frac{343}{4096} a - \frac{229}{2048}$, $\frac{1}{3670016} a^{20} + \frac{1}{1835008} a^{19} - \frac{5}{3670016} a^{18} - \frac{65}{229376} a^{17} - \frac{16551}{3670016} a^{16} - \frac{57089}{1835008} a^{15} - \frac{763939}{3670016} a^{14} - \frac{184067}{917504} a^{13} - \frac{658689}{3670016} a^{12} - \frac{236609}{1835008} a^{11} - \frac{436987}{3670016} a^{10} + \frac{10429}{65536} a^{9} + \frac{129305}{524288} a^{8} + \frac{41891}{262144} a^{7} + \frac{233229}{524288} a^{6} - \frac{55825}{131072} a^{5} - \frac{1813}{131072} a^{4} - \frac{1}{2048} a^{3} - \frac{7085}{32768} a^{2} + \frac{3147}{8192} a - \frac{383}{8192}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $16$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5620145735590000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 2939328 |
| The 99 conjugacy class representatives for t21n127 are not computed |
| Character table for t21n127 is not computed |
Intermediate fields
| 7.7.272225149504.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{3}$ | R | R | ${\href{/LocalNumberField/13.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/17.9.0.1}{9} }{,}\,{\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.9.0.1}{9} }{,}\,{\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{3}$ | $21$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/37.9.0.1}{9} }{,}\,{\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | $21$ | $21$ | ${\href{/LocalNumberField/47.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ | ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.7.6.1 | $x^{7} - 2$ | $7$ | $1$ | $6$ | $C_7:C_3$ | $[\ ]_{7}^{3}$ |
| 2.14.26.128 | $x^{14} + 2 x^{13} + 2 x^{12} + 4 x^{11} + 2 x^{10} + 4 x^{9} + 2 x^{8} + 4 x^{7} - 2 x^{6} + 4 x^{4} + 4 x^{3} + 2 x^{2} - 2$ | $14$ | $1$ | $26$ | 14T35 | $[18/7, 18/7, 18/7, 20/7, 20/7, 20/7]_{7}^{3}$ | |
| $3$ | 3.3.4.4 | $x^{3} + 3 x^{2} + 3$ | $3$ | $1$ | $4$ | $S_3$ | $[2]^{2}$ |
| 3.9.9.9 | $x^{9} + 18 x^{5} + 27 x^{2} + 54$ | $3$ | $3$ | $9$ | $(C_3^2:C_3):C_2$ | $[3/2, 3/2, 3/2]_{2}^{3}$ | |
| 3.9.9.2 | $x^{9} + 18 x^{3} + 27 x + 27$ | $3$ | $3$ | $9$ | $C_3^2 : S_3 $ | $[3/2, 3/2]_{2}^{3}$ | |
| $7$ | 7.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 7.9.8.2 | $x^{9} - 7$ | $9$ | $1$ | $8$ | $C_9:C_3$ | $[\ ]_{9}^{3}$ | |
| 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ | |
| $11$ | 11.7.6.1 | $x^{7} - 11$ | $7$ | $1$ | $6$ | $C_7:C_3$ | $[\ ]_{7}^{3}$ |
| 11.7.6.1 | $x^{7} - 11$ | $7$ | $1$ | $6$ | $C_7:C_3$ | $[\ ]_{7}^{3}$ | |
| 11.7.6.1 | $x^{7} - 11$ | $7$ | $1$ | $6$ | $C_7:C_3$ | $[\ ]_{7}^{3}$ |