Normalized defining polynomial
\( x^{21} - 6 x^{20} - 196 x^{19} + 908 x^{18} + 16298 x^{17} - 38657 x^{16} - 805846 x^{15} - 121733 x^{14} + 23579189 x^{13} + 60920978 x^{12} - 321396183 x^{11} - 1963423184 x^{10} - 1073818319 x^{9} + 21446736466 x^{8} + 79483877862 x^{7} + 59509268311 x^{6} - 426733627582 x^{5} - 1804226819510 x^{4} - 3692869755195 x^{3} - 4543444380349 x^{2} - 3247488161475 x - 1051284118606 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[13, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3939527404840449202647348389943760445443805570249819965902848=2^{12}\cdot 7^{14}\cdot 19^{2}\cdot 79^{2}\cdot 173^{9}\cdot 967^{2}\cdot 2202121^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $768.24$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 19, 79, 173, 967, 2202121$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{157543} a^{18} - \frac{1928}{157543} a^{17} - \frac{69819}{157543} a^{16} + \frac{70986}{157543} a^{15} + \frac{76853}{157543} a^{14} - \frac{73289}{157543} a^{13} + \frac{42077}{157543} a^{12} - \frac{77955}{157543} a^{11} - \frac{4028}{157543} a^{10} + \frac{74904}{157543} a^{9} + \frac{50400}{157543} a^{8} + \frac{6968}{157543} a^{7} - \frac{45008}{157543} a^{6} + \frac{40627}{157543} a^{5} - \frac{603}{157543} a^{4} + \frac{66725}{157543} a^{3} + \frac{18049}{157543} a^{2} + \frac{251}{157543} a - \frac{36916}{157543}$, $\frac{1}{157543} a^{19} - \frac{5971}{157543} a^{17} + \frac{1676}{157543} a^{16} + \frac{32994}{157543} a^{15} + \frac{8875}{157543} a^{14} + \frac{56956}{157543} a^{13} + \frac{69399}{157543} a^{12} - \frac{5246}{157543} a^{11} + \frac{28527}{157543} a^{10} - \frac{1619}{157543} a^{9} - \frac{25863}{157543} a^{8} - \frac{1859}{157543} a^{7} + \frac{71396}{157543} a^{6} + \frac{29382}{157543} a^{5} + \frac{6942}{157543} a^{4} - \frac{48782}{157543} a^{3} - \frac{18280}{157543} a^{2} - \frac{25617}{157543} a + \frac{35388}{157543}$, $\frac{1}{21435375181466400586528104910311908721136353459257813520238108731272836} a^{20} - \frac{19940151084456690118682540708159549969393306484316179045933480527}{21435375181466400586528104910311908721136353459257813520238108731272836} a^{19} + \frac{13124450974113627193234759774599045163533605636305913442306877759}{21435375181466400586528104910311908721136353459257813520238108731272836} a^{18} - \frac{2811039081933166430042907724255539896914556644314089967321341025679271}{21435375181466400586528104910311908721136353459257813520238108731272836} a^{17} - \frac{6142492538962548074922817621097665363161595523114802098201641031368999}{21435375181466400586528104910311908721136353459257813520238108731272836} a^{16} - \frac{2221387629973188423563461251175160035740471488880125078917558429769763}{10717687590733200293264052455155954360568176729628906760119054365636418} a^{15} + \frac{1088629218764105612537636991905094914028584416122273081638585949744933}{5358843795366600146632026227577977180284088364814453380059527182818209} a^{14} + \frac{3467955952853817030690668822064353317976375957027665854363614938172083}{21435375181466400586528104910311908721136353459257813520238108731272836} a^{13} + \frac{2438057001924049505624457076934314502161577318608625376694828745022177}{10717687590733200293264052455155954360568176729628906760119054365636418} a^{12} + \frac{839781878403915841875268401544818904209802133855701191200139941947769}{5358843795366600146632026227577977180284088364814453380059527182818209} a^{11} + \frac{2731573043620096625552478250020930605957637271123360222528175065363553}{21435375181466400586528104910311908721136353459257813520238108731272836} a^{10} - \frac{10329784463672333306716438944063096506792804001155701843958504608041285}{21435375181466400586528104910311908721136353459257813520238108731272836} a^{9} + \frac{5272842264109327375814738969694249936560624229309189343829301420251553}{10717687590733200293264052455155954360568176729628906760119054365636418} a^{8} + \frac{1549329417740633538048159161693265468037516888433500979227077486931569}{5358843795366600146632026227577977180284088364814453380059527182818209} a^{7} + \frac{495981416180070045782555278209472399721555105719204350076210750477259}{10717687590733200293264052455155954360568176729628906760119054365636418} a^{6} + \frac{875720145432520586910685013199813977767995957802441847378776715310425}{21435375181466400586528104910311908721136353459257813520238108731272836} a^{5} + \frac{9363627148738869688136778393379660970440836753032365426597190562985673}{21435375181466400586528104910311908721136353459257813520238108731272836} a^{4} - \frac{5083084440680806726097170836754725808047236262808108415802426155158159}{21435375181466400586528104910311908721136353459257813520238108731272836} a^{3} + \frac{2127693709037166680415494622187359556821784634632815648889290598577098}{5358843795366600146632026227577977180284088364814453380059527182818209} a^{2} + \frac{8620892580384053168267983445842244628269097475588383429979163493342527}{21435375181466400586528104910311908721136353459257813520238108731272836} a + \frac{3352674880230054139649773376880343327949755287885246350718380633184855}{10717687590733200293264052455155954360568176729628906760119054365636418}$
Class group and class number
$C_{3}\times C_{3}\times C_{3}$, which has order $27$ (assuming GRH)
Unit group
| Rank: | $16$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 25075218690200000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 5878656 |
| The 105 conjugacy class representatives for t21n133 are not computed |
| Character table for t21n133 is not computed |
Intermediate fields
| 7.7.12431698517.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $18{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }$ | $18{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }$ | R | ${\href{/LocalNumberField/11.12.0.1}{12} }{,}\,{\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | R | ${\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | $21$ | ${\href{/LocalNumberField/31.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | $21$ | ${\href{/LocalNumberField/43.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/47.9.0.1}{9} }{,}\,{\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 2.6.0.1 | $x^{6} - x + 1$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 2.12.12.26 | $x^{12} - 162 x^{10} + 26423 x^{8} + 125508 x^{6} - 64481 x^{4} - 122498 x^{2} - 86071$ | $2$ | $6$ | $12$ | $C_6\times C_2$ | $[2]^{6}$ | |
| 7 | Data not computed | ||||||
| $19$ | 19.3.2.1 | $x^{3} + 76$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 19.6.0.1 | $x^{6} - x + 3$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 19.6.0.1 | $x^{6} - x + 3$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 19.6.0.1 | $x^{6} - x + 3$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| $79$ | 79.3.2.2 | $x^{3} + 158$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 79.6.0.1 | $x^{6} - x + 6$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 79.6.0.1 | $x^{6} - x + 6$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 79.6.0.1 | $x^{6} - x + 6$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| $173$ | $\Q_{173}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{173}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{173}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 173.6.3.1 | $x^{6} - 346 x^{4} + 29929 x^{2} - 129442925$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 173.12.6.1 | $x^{12} + 196753246 x^{6} - 154963892093 x^{2} + 9677959952884129$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |
| 967 | Data not computed | ||||||
| 2202121 | Data not computed | ||||||