Normalized defining polynomial
\( x^{21} - 3 x^{19} - 2 x^{18} - 108 x^{17} - 144 x^{16} + 141 x^{15} + 378 x^{14} + 2520 x^{13} + 6104 x^{12} + 2646 x^{11} - 8652 x^{10} - 21233 x^{9} - 36324 x^{8} - 49287 x^{7} - 49534 x^{6} - 39852 x^{5} - 27864 x^{4} - 15696 x^{3} - 6048 x^{2} - 1344 x - 128 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[13, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(36068680148646461612743213200732662710272=2^{14}\cdot 3^{21}\cdot 29^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $85.37$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{8} a^{15} - \frac{1}{2} a^{14} + \frac{1}{8} a^{13} + \frac{1}{4} a^{12} - \frac{3}{8} a^{9} - \frac{1}{4} a^{8} - \frac{1}{2} a^{7} - \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{1}{8} a^{3} - \frac{3}{8} a - \frac{1}{4}$, $\frac{1}{64} a^{16} + \frac{1}{32} a^{15} + \frac{25}{64} a^{14} - \frac{1}{4} a^{13} + \frac{7}{16} a^{12} - \frac{1}{8} a^{11} + \frac{13}{64} a^{10} - \frac{3}{16} a^{9} - \frac{1}{8} a^{8} - \frac{1}{8} a^{7} - \frac{5}{32} a^{6} + \frac{31}{64} a^{4} - \frac{3}{32} a^{3} - \frac{11}{64} a^{2} + \frac{3}{16} a + \frac{5}{16}$, $\frac{1}{512} a^{17} + \frac{21}{512} a^{15} - \frac{33}{256} a^{14} - \frac{17}{128} a^{13} + \frac{157}{512} a^{11} + \frac{13}{256} a^{10} - \frac{3}{32} a^{9} - \frac{31}{64} a^{8} + \frac{99}{256} a^{7} - \frac{11}{128} a^{6} + \frac{159}{512} a^{5} - \frac{1}{128} a^{4} + \frac{129}{512} a^{3} + \frac{17}{256} a^{2} - \frac{49}{128} a - \frac{21}{64}$, $\frac{1}{69632} a^{18} - \frac{1}{2048} a^{17} + \frac{533}{69632} a^{16} - \frac{67}{17408} a^{15} - \frac{23}{544} a^{14} + \frac{1249}{8704} a^{13} - \frac{17763}{69632} a^{12} + \frac{21}{1088} a^{11} - \frac{1641}{17408} a^{10} - \frac{2067}{8704} a^{9} + \frac{11483}{34816} a^{8} - \frac{95}{512} a^{7} + \frac{9847}{69632} a^{6} + \frac{12911}{34816} a^{5} + \frac{14601}{69632} a^{4} + \frac{87}{272} a^{3} - \frac{233}{8704} a^{2} + \frac{363}{2176} a + \frac{2149}{4352}$, $\frac{1}{557056} a^{19} - \frac{1}{139264} a^{18} - \frac{487}{557056} a^{17} - \frac{843}{278528} a^{16} + \frac{2979}{69632} a^{15} - \frac{3263}{69632} a^{14} - \frac{135795}{557056} a^{13} - \frac{91693}{278528} a^{12} + \frac{25847}{139264} a^{11} + \frac{16035}{34816} a^{10} + \frac{7155}{278528} a^{9} + \frac{64567}{139264} a^{8} + \frac{248935}{557056} a^{7} + \frac{285}{2048} a^{6} + \frac{23309}{557056} a^{5} - \frac{109305}{278528} a^{4} + \frac{18007}{69632} a^{3} - \frac{16913}{34816} a^{2} - \frac{10887}{34816} a + \frac{8299}{17408}$, $\frac{1}{4456448} a^{20} + \frac{1}{2228224} a^{19} + \frac{1}{4456448} a^{18} + \frac{1}{1088} a^{17} + \frac{2021}{1114112} a^{16} - \frac{3629}{557056} a^{15} + \frac{1768893}{4456448} a^{14} - \frac{528579}{1114112} a^{13} + \frac{7695}{69632} a^{12} - \frac{57877}{557056} a^{11} - \frac{146301}{2228224} a^{10} + \frac{10177}{69632} a^{9} - \frac{1831537}{4456448} a^{8} - \frac{1050979}{2228224} a^{7} + \frac{1595885}{4456448} a^{6} + \frac{424087}{1114112} a^{5} + \frac{506435}{1114112} a^{4} - \frac{21035}{69632} a^{3} - \frac{29485}{278528} a^{2} - \frac{25333}{69632} a - \frac{12287}{69632}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $16$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6544435479500 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1959552 |
| The 333 conjugacy class representatives for t21n123 are not computed |
| Character table for t21n123 is not computed |
Intermediate fields
| 7.7.594823321.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.14.0.1}{14} }{,}\,{\href{/LocalNumberField/5.7.0.1}{7} }$ | ${\href{/LocalNumberField/7.14.0.1}{14} }{,}\,{\href{/LocalNumberField/7.7.0.1}{7} }$ | $21$ | $21$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{5}$ | ${\href{/LocalNumberField/19.14.0.1}{14} }{,}\,{\href{/LocalNumberField/19.7.0.1}{7} }$ | $21$ | R | ${\href{/LocalNumberField/31.14.0.1}{14} }{,}\,{\href{/LocalNumberField/31.7.0.1}{7} }$ | ${\href{/LocalNumberField/37.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{9}$ | ${\href{/LocalNumberField/43.14.0.1}{14} }{,}\,{\href{/LocalNumberField/43.7.0.1}{7} }$ | $21$ | ${\href{/LocalNumberField/53.14.0.1}{14} }{,}\,{\href{/LocalNumberField/53.7.0.1}{7} }$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{7}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.7.0.1 | $x^{7} - x + 1$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ |
| 2.14.14.24 | $x^{14} - 3 x^{12} + 2 x^{11} + 2 x^{10} + 4 x^{8} + 4 x^{7} + 2 x^{6} + 2 x^{4} + 2 x^{2} + 2 x + 3$ | $2$ | $7$ | $14$ | 14T9 | $[2, 2, 2, 2]^{7}$ | |
| 3 | Data not computed | ||||||
| $29$ | 29.7.6.2 | $x^{7} - 29$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ |
| 29.14.12.1 | $x^{14} + 2407 x^{7} + 1839267$ | $7$ | $2$ | $12$ | $C_{14}$ | $[\ ]_{7}^{2}$ | |