Normalized defining polynomial
\( x^{21} + 24 x^{19} - 16 x^{18} - 297 x^{17} + 396 x^{16} - 7881 x^{15} + 15498 x^{14} + 14859 x^{13} - 64880 x^{12} + 659124 x^{11} - 2003016 x^{10} + 1978298 x^{9} + 876312 x^{8} - 11936907 x^{7} + 41795214 x^{6} - 77901372 x^{5} + 84911832 x^{4} - 56319248 x^{3} + 22504608 x^{2} - 5001024 x + 476288 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[13, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2469302026241064308075329448353362630033408=2^{14}\cdot 3^{29}\cdot 61^{2}\cdot 8388019^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $104.40$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 61, 8388019$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{3} a^{3} - \frac{1}{3}$, $\frac{1}{3} a^{4} - \frac{1}{3} a$, $\frac{1}{3} a^{5} - \frac{1}{3} a^{2}$, $\frac{1}{9} a^{6} + \frac{1}{9} a^{3} - \frac{2}{9}$, $\frac{1}{9} a^{7} + \frac{1}{9} a^{4} - \frac{2}{9} a$, $\frac{1}{9} a^{8} + \frac{1}{9} a^{5} - \frac{2}{9} a^{2}$, $\frac{1}{27} a^{9} - \frac{1}{9} a^{3} + \frac{2}{27}$, $\frac{1}{27} a^{10} - \frac{1}{9} a^{4} + \frac{2}{27} a$, $\frac{1}{27} a^{11} - \frac{1}{9} a^{5} + \frac{2}{27} a^{2}$, $\frac{1}{81} a^{12} - \frac{1}{81} a^{9} - \frac{1}{27} a^{6} + \frac{5}{81} a^{3} - \frac{2}{81}$, $\frac{1}{81} a^{13} - \frac{1}{81} a^{10} - \frac{1}{27} a^{7} + \frac{5}{81} a^{4} - \frac{2}{81} a$, $\frac{1}{81} a^{14} - \frac{1}{81} a^{11} - \frac{1}{27} a^{8} + \frac{5}{81} a^{5} - \frac{2}{81} a^{2}$, $\frac{1}{1944} a^{15} - \frac{1}{162} a^{14} - \frac{1}{162} a^{13} - \frac{1}{243} a^{12} - \frac{11}{648} a^{11} - \frac{1}{81} a^{10} - \frac{5}{1944} a^{9} - \frac{1}{108} a^{8} + \frac{7}{216} a^{7} - \frac{7}{486} a^{6} + \frac{11}{81} a^{5} - \frac{7}{81} a^{4} + \frac{49}{972} a^{3} + \frac{22}{81} a^{2} + \frac{47}{648} a + \frac{457}{972}$, $\frac{1}{15552} a^{16} - \frac{1}{7776} a^{15} - \frac{1}{1296} a^{14} - \frac{7}{1944} a^{13} + \frac{55}{15552} a^{12} + \frac{5}{2592} a^{11} - \frac{29}{15552} a^{10} - \frac{23}{3888} a^{9} - \frac{29}{1728} a^{8} - \frac{347}{7776} a^{7} - \frac{65}{1944} a^{6} + \frac{47}{648} a^{5} + \frac{685}{7776} a^{4} - \frac{7}{3888} a^{3} - \frac{2401}{5184} a^{2} + \frac{581}{3888} a - \frac{643}{3888}$, $\frac{1}{124416} a^{17} - \frac{1}{7776} a^{15} + \frac{19}{7776} a^{14} + \frac{5}{4608} a^{13} + \frac{131}{31104} a^{12} + \frac{799}{124416} a^{11} - \frac{17}{2304} a^{10} - \frac{1405}{124416} a^{9} + \frac{11}{486} a^{8} - \frac{13}{384} a^{7} + \frac{299}{15552} a^{6} - \frac{6731}{62208} a^{5} + \frac{17}{576} a^{4} - \frac{5339}{124416} a^{3} - \frac{15641}{62208} a^{2} + \frac{469}{1152} a - \frac{6931}{15552}$, $\frac{1}{2985984} a^{18} - \frac{1}{497664} a^{17} + \frac{1}{62208} a^{16} - \frac{5}{62208} a^{15} + \frac{205}{995328} a^{14} - \frac{133}{497664} a^{13} - \frac{2851}{995328} a^{12} - \frac{815}{62208} a^{11} + \frac{8941}{995328} a^{10} - \frac{9865}{1492992} a^{9} - \frac{9679}{248832} a^{8} + \frac{899}{62208} a^{7} - \frac{7793}{497664} a^{6} - \frac{7555}{248832} a^{5} - \frac{76153}{995328} a^{4} - \frac{3371}{62208} a^{3} - \frac{56573}{124416} a^{2} + \frac{3191}{15552} a - \frac{79223}{186624}$, $\frac{1}{23887872} a^{19} - \frac{1}{5971968} a^{18} + \frac{1}{663552} a^{17} - \frac{1}{165888} a^{16} + \frac{5}{884736} a^{15} + \frac{1}{55296} a^{14} - \frac{3383}{7962624} a^{13} + \frac{9061}{3981312} a^{12} - \frac{18001}{2654208} a^{11} + \frac{91423}{5971968} a^{10} - \frac{19451}{2985984} a^{9} - \frac{2627}{331776} a^{8} + \frac{39061}{1327104} a^{7} - \frac{8191}{165888} a^{6} - \frac{8513}{98304} a^{5} - \frac{158417}{3981312} a^{4} - \frac{88489}{995328} a^{3} - \frac{43787}{165888} a^{2} - \frac{417359}{1492992} a + \frac{335497}{746496}$, $\frac{1}{34971844608} a^{20} - \frac{1}{286654464} a^{19} + \frac{799}{8742961152} a^{18} + \frac{5225}{1457160192} a^{17} - \frac{180659}{11657281536} a^{16} + \frac{57833}{5828640768} a^{15} + \frac{55818473}{11657281536} a^{14} - \frac{17831479}{2914320384} a^{13} + \frac{23725169}{11657281536} a^{12} - \frac{322215103}{17485922304} a^{11} - \frac{3080263}{273217536} a^{10} + \frac{74573687}{4371480576} a^{9} + \frac{278040919}{5828640768} a^{8} - \frac{21006073}{2914320384} a^{7} + \frac{4799099}{191102976} a^{6} + \frac{114924109}{2914320384} a^{5} - \frac{73506503}{2914320384} a^{4} + \frac{22123097}{364290048} a^{3} + \frac{247022419}{2185740288} a^{2} - \frac{85205}{8957952} a + \frac{2571601}{8957952}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $16$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 61555633715100 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 705438720 |
| The 261 conjugacy class representatives for t21n149 are not computed |
| Character table for t21n149 is not computed |
Intermediate fields
| 7.7.25164057.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.12.0.1}{12} }{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{3}$ | $21$ | ${\href{/LocalNumberField/11.9.0.1}{9} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{3}$ | $21$ | ${\href{/LocalNumberField/17.10.0.1}{10} }{,}\,{\href{/LocalNumberField/17.5.0.1}{5} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | ${\href{/LocalNumberField/19.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }$ | $18{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }$ | $18{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{7}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{3}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | $15{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.7.0.1 | $x^{7} - x + 1$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ |
| 2.14.14.19 | $x^{14} + 4 x^{13} + x^{12} + 4 x^{10} + 2 x^{9} - 2 x^{8} - 2 x^{7} + 4 x^{6} - 2 x^{5} + 4 x^{4} - 2 x^{3} + 2 x^{2} + 1$ | $2$ | $7$ | $14$ | 14T21 | $[2, 2, 2, 2, 2, 2]^{7}$ | |
| 3 | Data not computed | ||||||
| 61 | Data not computed | ||||||
| 8388019 | Data not computed | ||||||