Normalized defining polynomial
\( x^{21} - 8 x^{20} - 100 x^{19} + 760 x^{18} + 3546 x^{17} - 31335 x^{16} - 46194 x^{15} + 702781 x^{14} - 296823 x^{13} - 8745840 x^{12} + 16495345 x^{11} + 51009938 x^{10} - 197150643 x^{9} + 13893236 x^{8} + 893190950 x^{7} - 1499958683 x^{6} + 51877462 x^{5} + 3070734174 x^{4} - 6898013923 x^{3} + 11872540551 x^{2} - 13647809835 x + 6978115776 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[13, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(24218276680387803330868490531847967746608778942945349632=2^{12}\cdot 3^{4}\cdot 7^{12}\cdot 173^{9}\cdot 349^{2}\cdot 17661517^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $433.85$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 173, 349, 17661517$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{157543} a^{18} + \frac{1916}{157543} a^{17} + \frac{68576}{157543} a^{16} + \frac{34106}{157543} a^{15} - \frac{31353}{157543} a^{14} + \frac{9928}{157543} a^{13} - \frac{30282}{157543} a^{12} - \frac{14959}{157543} a^{11} - \frac{13628}{157543} a^{10} + \frac{33028}{157543} a^{9} + \frac{10}{157543} a^{8} - \frac{73435}{157543} a^{7} + \frac{69267}{157543} a^{6} - \frac{61583}{157543} a^{5} + \frac{349}{157543} a^{4} - \frac{52503}{157543} a^{3} - \frac{56307}{157543} a^{2} - \frac{21096}{157543} a - \frac{58043}{157543}$, $\frac{1}{157543} a^{19} + \frac{21009}{157543} a^{17} + \frac{33352}{157543} a^{16} + \frac{1896}{157543} a^{15} + \frac{58393}{157543} a^{14} + \frac{10373}{157543} a^{13} + \frac{29529}{157543} a^{12} - \frac{25010}{157543} a^{11} - \frac{7862}{157543} a^{10} + \frac{50648}{157543} a^{9} + \frac{64948}{157543} a^{8} - \frac{72715}{157543} a^{7} + \frac{31594}{157543} a^{6} - \frac{6330}{157543} a^{5} + \frac{66528}{157543} a^{4} + \frac{27007}{157543} a^{3} - \frac{53839}{157543} a^{2} + \frac{30885}{157543} a - \frac{14970}{157543}$, $\frac{1}{2959578650308870739569528181887617001478240396373454892} a^{20} - \frac{6749408676650434500176774910466974998724691771083}{2959578650308870739569528181887617001478240396373454892} a^{19} + \frac{9312923265717023255285145907005120822885539099509}{2959578650308870739569528181887617001478240396373454892} a^{18} + \frac{1132055216636079705381389962400081155010737478290115101}{2959578650308870739569528181887617001478240396373454892} a^{17} - \frac{228501713681283077209609579527609066338761389780415321}{2959578650308870739569528181887617001478240396373454892} a^{16} - \frac{21254086656593961364219964267324415612543323918223819}{739894662577217684892382045471904250369560099093363723} a^{15} - \frac{573202609521886090369657657101410454088031450936490273}{1479789325154435369784764090943808500739120198186727446} a^{14} + \frac{134176939363565603795946587446325131297098704488330347}{2959578650308870739569528181887617001478240396373454892} a^{13} + \frac{263893496818582038273200381106044619124320545749716527}{739894662577217684892382045471904250369560099093363723} a^{12} - \frac{321140873170177668892422916370339022896679000097935421}{739894662577217684892382045471904250369560099093363723} a^{11} - \frac{115306969312383477292162403288462687613560424542113347}{2959578650308870739569528181887617001478240396373454892} a^{10} + \frac{1051298654044315444499277733601650629181402221923164743}{2959578650308870739569528181887617001478240396373454892} a^{9} - \frac{32554429612406558346614553790305454441012252808754836}{739894662577217684892382045471904250369560099093363723} a^{8} + \frac{231901009738571147903643189805497140903894523820335604}{739894662577217684892382045471904250369560099093363723} a^{7} + \frac{565433145233978562708703811986939466509454138534749545}{1479789325154435369784764090943808500739120198186727446} a^{6} + \frac{1117515385565703088952152947371227563231429328703113727}{2959578650308870739569528181887617001478240396373454892} a^{5} - \frac{91529016058687926097311728871168983962916476831513551}{2959578650308870739569528181887617001478240396373454892} a^{4} - \frac{682228669873701389715659715295950160128836936654416593}{2959578650308870739569528181887617001478240396373454892} a^{3} + \frac{211680978151918690055365752924687077885631023059083224}{739894662577217684892382045471904250369560099093363723} a^{2} - \frac{509314450177947996889785876580914442698509421903067441}{2959578650308870739569528181887617001478240396373454892} a - \frac{13720086398063817790147099219340677927720494059475532}{739894662577217684892382045471904250369560099093363723}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $16$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 622805641791000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 5878656 |
| The 105 conjugacy class representatives for t21n133 are not computed |
| Character table for t21n133 is not computed |
Intermediate fields
| 7.7.12431698517.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | $18{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }$ | R | ${\href{/LocalNumberField/11.12.0.1}{12} }{,}\,{\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | $18{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }$ | ${\href{/LocalNumberField/23.9.0.1}{9} }{,}\,{\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | $21$ | ${\href{/LocalNumberField/31.9.0.1}{9} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{3}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/37.9.0.1}{9} }{,}\,{\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | $21$ | $21$ | ${\href{/LocalNumberField/47.9.0.1}{9} }{,}\,{\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 2.6.0.1 | $x^{6} - x + 1$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 2.12.12.26 | $x^{12} - 162 x^{10} + 26423 x^{8} + 125508 x^{6} - 64481 x^{4} - 122498 x^{2} - 86071$ | $2$ | $6$ | $12$ | $C_6\times C_2$ | $[2]^{6}$ | |
| 3 | Data not computed | ||||||
| 7 | Data not computed | ||||||
| $173$ | $\Q_{173}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{173}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{173}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 173.6.3.1 | $x^{6} - 346 x^{4} + 29929 x^{2} - 129442925$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 173.12.6.1 | $x^{12} + 196753246 x^{6} - 154963892093 x^{2} + 9677959952884129$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |
| 349 | Data not computed | ||||||
| 17661517 | Data not computed | ||||||