Normalized defining polynomial
\( x^{21} - x^{20} - 144 x^{19} + 378 x^{18} + 8278 x^{17} - 35490 x^{16} - 221869 x^{15} + 1501757 x^{14} + 1838931 x^{13} - 32357739 x^{12} + 41883236 x^{11} + 324873323 x^{10} - 1145395041 x^{9} - 404084435 x^{8} + 9148701429 x^{7} - 16963827940 x^{6} - 7849718366 x^{5} + 80178499093 x^{4} - 144336599294 x^{3} + 129703535043 x^{2} - 59636222162 x + 10937301223 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[13, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2240383313285621648550590602803486470004158142680478857=17^{3}\cdot 29^{18}\cdot 307^{2}\cdot 4794766099^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $387.36$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 29, 307, 4794766099$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{17} a^{15} + \frac{7}{17} a^{13} - \frac{7}{17} a^{12} - \frac{1}{17} a^{11} - \frac{2}{17} a^{10} + \frac{1}{17} a^{9} - \frac{7}{17} a^{8} + \frac{6}{17} a^{7} + \frac{4}{17} a^{6} + \frac{8}{17} a^{5} + \frac{7}{17} a^{4} - \frac{6}{17} a^{3} - \frac{2}{17} a^{2} + \frac{1}{17} a + \frac{7}{17}$, $\frac{1}{17} a^{16} + \frac{7}{17} a^{14} - \frac{7}{17} a^{13} - \frac{1}{17} a^{12} - \frac{2}{17} a^{11} + \frac{1}{17} a^{10} - \frac{7}{17} a^{9} + \frac{6}{17} a^{8} + \frac{4}{17} a^{7} + \frac{8}{17} a^{6} + \frac{7}{17} a^{5} - \frac{6}{17} a^{4} - \frac{2}{17} a^{3} + \frac{1}{17} a^{2} + \frac{7}{17} a$, $\frac{1}{17} a^{17} - \frac{7}{17} a^{14} + \frac{1}{17} a^{13} - \frac{4}{17} a^{12} + \frac{8}{17} a^{11} + \frac{7}{17} a^{10} - \frac{1}{17} a^{9} + \frac{2}{17} a^{8} - \frac{4}{17} a^{6} + \frac{6}{17} a^{5} - \frac{8}{17} a^{3} + \frac{4}{17} a^{2} - \frac{7}{17} a + \frac{2}{17}$, $\frac{1}{17} a^{18} + \frac{1}{17} a^{14} - \frac{6}{17} a^{13} - \frac{7}{17} a^{12} + \frac{2}{17} a^{10} - \frac{8}{17} a^{9} + \frac{2}{17} a^{8} + \frac{4}{17} a^{7} + \frac{5}{17} a^{5} + \frac{7}{17} a^{4} - \frac{4}{17} a^{3} - \frac{4}{17} a^{2} - \frac{8}{17} a - \frac{2}{17}$, $\frac{1}{289} a^{19} - \frac{2}{289} a^{18} - \frac{3}{289} a^{17} + \frac{1}{289} a^{16} + \frac{6}{289} a^{15} + \frac{122}{289} a^{14} + \frac{132}{289} a^{13} - \frac{44}{289} a^{12} + \frac{73}{289} a^{11} - \frac{127}{289} a^{10} - \frac{117}{289} a^{9} - \frac{35}{289} a^{8} - \frac{127}{289} a^{7} + \frac{45}{289} a^{6} - \frac{8}{289} a^{5} - \frac{74}{289} a^{4} + \frac{98}{289} a^{3} - \frac{38}{289} a^{2} - \frac{89}{289} a + \frac{118}{289}$, $\frac{1}{432291884359285830184127340428778753829427869891286993100625573} a^{20} - \frac{32099840435754747548272004866194805919537468408301928462524}{25428934374075637069654549436986985519378109993605117241213269} a^{19} - \frac{7825888936273179336699279242020307344831000606429698733612569}{432291884359285830184127340428778753829427869891286993100625573} a^{18} - \frac{11300689490859150074331310068745714515886421748630535738451031}{432291884359285830184127340428778753829427869891286993100625573} a^{17} - \frac{5451139702895045223485271805736807863110502152342243261079637}{432291884359285830184127340428778753829427869891286993100625573} a^{16} + \frac{11770487920006932814209884426945605036730038932462145150691184}{432291884359285830184127340428778753829427869891286993100625573} a^{15} - \frac{150958748904874699180837803971229879684813604042999404284413699}{432291884359285830184127340428778753829427869891286993100625573} a^{14} - \frac{20516627005035235620135580252423419939290020854224731185885070}{432291884359285830184127340428778753829427869891286993100625573} a^{13} + \frac{192383211828993870905255294704707321850025417849281171345446939}{432291884359285830184127340428778753829427869891286993100625573} a^{12} - \frac{115515997101917443505183388825409234266943296781349913145195474}{432291884359285830184127340428778753829427869891286993100625573} a^{11} - \frac{207117572783274571179058705490905305684927815463191709498796359}{432291884359285830184127340428778753829427869891286993100625573} a^{10} + \frac{155765291653925391531231146782271335671474602106634779594540398}{432291884359285830184127340428778753829427869891286993100625573} a^{9} - \frac{72047052268886970402820413867635857285272312662919220954256551}{432291884359285830184127340428778753829427869891286993100625573} a^{8} + \frac{182539212455121259698489076456087440668265750555953738534953771}{432291884359285830184127340428778753829427869891286993100625573} a^{7} - \frac{157504459027859939992856672529355436100948724941162086446156830}{432291884359285830184127340428778753829427869891286993100625573} a^{6} + \frac{166156821757904205123064802580924499976465308693738529578830446}{432291884359285830184127340428778753829427869891286993100625573} a^{5} - \frac{41513888628894991846948285241918389258582612358250208208320000}{432291884359285830184127340428778753829427869891286993100625573} a^{4} - \frac{28556376864668434194933752534641036298858795319344829545597779}{432291884359285830184127340428778753829427869891286993100625573} a^{3} - \frac{66410825445702734702861830799292613878356343668010775402250605}{432291884359285830184127340428778753829427869891286993100625573} a^{2} - \frac{136132093482366004066484482668004877705998901439529320306883113}{432291884359285830184127340428778753829427869891286993100625573} a + \frac{57168097002426466533816850923872944968307974297109286874189510}{432291884359285830184127340428778753829427869891286993100625573}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $16$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 27014771962600000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1959552 |
| The 333 conjugacy class representatives for t21n123 are not computed |
| Character table for t21n123 is not computed |
Intermediate fields
| 7.7.594823321.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $21$ | ${\href{/LocalNumberField/3.14.0.1}{14} }{,}\,{\href{/LocalNumberField/3.7.0.1}{7} }$ | ${\href{/LocalNumberField/5.14.0.1}{14} }{,}\,{\href{/LocalNumberField/5.7.0.1}{7} }$ | ${\href{/LocalNumberField/7.14.0.1}{14} }{,}\,{\href{/LocalNumberField/7.7.0.1}{7} }$ | ${\href{/LocalNumberField/11.14.0.1}{14} }{,}\,{\href{/LocalNumberField/11.7.0.1}{7} }$ | $21$ | R | ${\href{/LocalNumberField/19.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/23.14.0.1}{14} }{,}\,{\href{/LocalNumberField/23.7.0.1}{7} }$ | R | ${\href{/LocalNumberField/31.14.0.1}{14} }{,}\,{\href{/LocalNumberField/31.7.0.1}{7} }$ | ${\href{/LocalNumberField/37.14.0.1}{14} }{,}\,{\href{/LocalNumberField/37.7.0.1}{7} }$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{3}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/43.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/47.7.0.1}{7} }^{3}$ | $21$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $17$ | $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| $29$ | 29.7.6.2 | $x^{7} - 29$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ |
| 29.14.12.1 | $x^{14} + 2407 x^{7} + 1839267$ | $7$ | $2$ | $12$ | $C_{14}$ | $[\ ]_{7}^{2}$ | |
| 307 | Data not computed | ||||||
| 4794766099 | Data not computed | ||||||