Normalized defining polynomial
\( x^{21} + 24 x^{19} - 16 x^{18} - 459 x^{17} + 612 x^{16} - 11355 x^{15} + 22302 x^{14} + 46044 x^{13} - 159128 x^{12} + 1546074 x^{11} - 4684332 x^{10} + 4473917 x^{9} + 2650860 x^{8} - 37055628 x^{7} + 136617936 x^{6} - 258599088 x^{5} + 283109760 x^{4} - 187999040 x^{3} + 75140352 x^{2} - 16697856 x + 1590272 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[13, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(218227930326934861214217295120255573869289271660544=2^{12}\cdot 3^{28}\cdot 149^{6}\cdot 211^{6}\cdot 1553^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $249.51$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 149, 211, 1553$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{3} a^{3} - \frac{1}{3}$, $\frac{1}{3} a^{4} - \frac{1}{3} a$, $\frac{1}{3} a^{5} - \frac{1}{3} a^{2}$, $\frac{1}{9} a^{6} + \frac{1}{9} a^{3} - \frac{2}{9}$, $\frac{1}{9} a^{7} + \frac{1}{9} a^{4} - \frac{2}{9} a$, $\frac{1}{9} a^{8} + \frac{1}{9} a^{5} - \frac{2}{9} a^{2}$, $\frac{1}{27} a^{9} - \frac{1}{9} a^{3} + \frac{2}{27}$, $\frac{1}{27} a^{10} - \frac{1}{9} a^{4} + \frac{2}{27} a$, $\frac{1}{27} a^{11} - \frac{1}{9} a^{5} + \frac{2}{27} a^{2}$, $\frac{1}{162} a^{12} - \frac{1}{54} a^{11} - \frac{1}{54} a^{10} - \frac{1}{162} a^{9} - \frac{1}{54} a^{6} + \frac{1}{18} a^{5} + \frac{1}{18} a^{4} + \frac{5}{162} a^{3} + \frac{25}{54} a^{2} + \frac{25}{54} a - \frac{1}{81}$, $\frac{1}{324} a^{13} - \frac{1}{324} a^{12} - \frac{1}{108} a^{11} - \frac{1}{324} a^{10} - \frac{1}{162} a^{9} - \frac{1}{18} a^{8} + \frac{5}{108} a^{7} + \frac{1}{108} a^{6} + \frac{5}{36} a^{5} + \frac{23}{324} a^{4} + \frac{31}{324} a^{3} + \frac{19}{108} a^{2} + \frac{31}{81} a - \frac{28}{81}$, $\frac{1}{324} a^{14} - \frac{1}{81} a^{11} - \frac{1}{108} a^{10} - \frac{1}{108} a^{8} - \frac{1}{18} a^{7} - \frac{10}{81} a^{5} + \frac{1}{18} a^{4} - \frac{35}{324} a^{2} + \frac{7}{27} a$, $\frac{1}{1944} a^{15} + \frac{1}{486} a^{12} + \frac{1}{216} a^{11} + \frac{1}{1944} a^{9} + \frac{1}{36} a^{8} - \frac{1}{18} a^{7} + \frac{11}{486} a^{6} + \frac{5}{36} a^{5} + \frac{1}{9} a^{4} - \frac{31}{1944} a^{3} - \frac{8}{27} a^{2} + \frac{4}{9} a + \frac{28}{243}$, $\frac{1}{15552} a^{16} - \frac{1}{7776} a^{15} - \frac{1}{1296} a^{14} - \frac{1}{1944} a^{13} + \frac{37}{15552} a^{12} - \frac{25}{2592} a^{11} + \frac{121}{15552} a^{10} + \frac{67}{3888} a^{9} - \frac{5}{432} a^{8} - \frac{49}{972} a^{7} + \frac{253}{7776} a^{6} - \frac{53}{324} a^{5} - \frac{1603}{15552} a^{4} + \frac{481}{7776} a^{3} - \frac{143}{648} a^{2} + \frac{109}{486} a + \frac{13}{486}$, $\frac{1}{124416} a^{17} - \frac{1}{7776} a^{15} - \frac{5}{7776} a^{14} - \frac{1}{4608} a^{13} - \frac{7}{31104} a^{12} - \frac{1571}{124416} a^{11} - \frac{25}{6912} a^{10} - \frac{175}{31104} a^{9} + \frac{199}{15552} a^{8} - \frac{49}{2304} a^{7} - \frac{851}{31104} a^{6} - \frac{10387}{124416} a^{5} - \frac{119}{1152} a^{4} - \frac{4205}{31104} a^{3} - \frac{1033}{7776} a^{2} + \frac{31}{432} a - \frac{371}{1944}$, $\frac{1}{2985984} a^{18} - \frac{1}{497664} a^{17} + \frac{1}{62208} a^{16} - \frac{5}{62208} a^{15} + \frac{151}{995328} a^{14} + \frac{65}{497664} a^{13} + \frac{407}{995328} a^{12} - \frac{1013}{62208} a^{11} + \frac{907}{62208} a^{10} - \frac{1543}{93312} a^{9} - \frac{10097}{497664} a^{8} + \frac{637}{124416} a^{7} - \frac{2329}{995328} a^{6} + \frac{28981}{497664} a^{5} - \frac{40069}{248832} a^{4} - \frac{9721}{124416} a^{3} - \frac{6661}{15552} a^{2} + \frac{283}{1944} a - \frac{1327}{23328}$, $\frac{1}{23887872} a^{19} - \frac{1}{5971968} a^{18} + \frac{1}{663552} a^{17} - \frac{1}{165888} a^{16} - \frac{1}{884736} a^{15} + \frac{1}{18432} a^{14} - \frac{5477}{7962624} a^{13} - \frac{10769}{3981312} a^{12} + \frac{1547}{165888} a^{11} - \frac{851}{373248} a^{10} + \frac{67789}{11943936} a^{9} + \frac{24707}{663552} a^{8} + \frac{8765}{2654208} a^{7} - \frac{10835}{331776} a^{6} - \frac{1133}{13824} a^{5} + \frac{42305}{497664} a^{4} - \frac{45197}{497664} a^{3} - \frac{7843}{20736} a^{2} + \frac{50681}{186624} a - \frac{14575}{93312}$, $\frac{1}{191102976} a^{20} - \frac{1}{95551488} a^{19} + \frac{7}{47775744} a^{18} - \frac{1}{2654208} a^{17} - \frac{35}{21233664} a^{16} + \frac{23}{3538944} a^{15} - \frac{4613}{63700992} a^{14} + \frac{4165}{15925248} a^{13} - \frac{4493}{15925248} a^{12} - \frac{1603}{5971968} a^{11} + \frac{824333}{95551488} a^{10} - \frac{28243}{5971968} a^{9} - \frac{29497}{7077888} a^{8} + \frac{78587}{3538944} a^{7} - \frac{21359}{1327104} a^{6} - \frac{564583}{3981312} a^{5} - \frac{277003}{3981312} a^{4} + \frac{129487}{1990656} a^{3} - \frac{335869}{1492992} a^{2} - \frac{58555}{373248} a - \frac{178159}{373248}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $16$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6636766064500000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 352719360 |
| The 150 conjugacy class representatives for t21n148 are not computed |
| Character table for t21n148 is not computed |
Intermediate fields
| 7.7.988410721.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | $21$ | ${\href{/LocalNumberField/7.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{3}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | $21$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }$ | ${\href{/LocalNumberField/29.7.0.1}{7} }^{3}$ | $21$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.12.0.1}{12} }{,}\,{\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{3}$ | $21$ | $21$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.5.0.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 2.10.10.5 | $x^{10} - 9 x^{8} + 50 x^{6} - 50 x^{4} + 45 x^{2} - 5$ | $2$ | $5$ | $10$ | $C_2 \times (C_2^4 : C_5)$ | $[2, 2, 2, 2]^{10}$ | |
| 3 | Data not computed | ||||||
| 149 | Data not computed | ||||||
| 211 | Data not computed | ||||||
| 1553 | Data not computed | ||||||