Normalized defining polynomial
\( x^{21} - x^{20} - 304 x^{19} - 413 x^{18} + 34314 x^{17} + 117219 x^{16} - 1743527 x^{15} - 9541780 x^{14} + 35594638 x^{13} + 331886321 x^{12} + 20844962 x^{11} - 5313800527 x^{10} - 11484708658 x^{9} + 30607568115 x^{8} + 153656682539 x^{7} + 104733558293 x^{6} - 546519412854 x^{5} - 1364234905323 x^{4} - 1010634995530 x^{3} + 332251716097 x^{2} + 766749346364 x + 218368123153 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[13, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(196208035369411570382550543050019044909992791705066150049=29^{6}\cdot 31^{4}\cdot 43^{2}\cdot 193^{2}\cdot 271^{2}\cdot 4391^{4}\cdot 13782217^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $479.30$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $29, 31, 43, 193, 271, 4391, 13782217$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{13} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{13} - \frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{13} - \frac{1}{2} a^{12} - \frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{17} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{18} - \frac{1}{2} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{19} - \frac{1}{2} a^{13} - \frac{1}{2} a^{12} - \frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{759922825083877941706958595623458326672896012251749179763245367580240250964946230985597067033301882913543642} a^{20} - \frac{71248611738357467733970585655328940897964452273698527861471770574724571060090691333994271887145157585744407}{759922825083877941706958595623458326672896012251749179763245367580240250964946230985597067033301882913543642} a^{19} - \frac{187373880480802160243165030785375161914035761672899077478232628097208240420183781743626984637311078575747441}{759922825083877941706958595623458326672896012251749179763245367580240250964946230985597067033301882913543642} a^{18} + \frac{71594179462992427793945050316675550817408448063711769582548227113252633946858762953198174649755529272680203}{379961412541938970853479297811729163336448006125874589881622683790120125482473115492798533516650941456771821} a^{17} - \frac{57104603675126653782338492414306627799124631469368828962461763750958752083447571913808778437721406157163867}{379961412541938970853479297811729163336448006125874589881622683790120125482473115492798533516650941456771821} a^{16} + \frac{158665600983686905221506571331677159553141333206928482208169088461307897015327182060278622361890978845104095}{759922825083877941706958595623458326672896012251749179763245367580240250964946230985597067033301882913543642} a^{15} + \frac{61703486428409742601045325923852240180962646600976074475419477282824386831282875550314300141962507883926848}{379961412541938970853479297811729163336448006125874589881622683790120125482473115492798533516650941456771821} a^{14} - \frac{104085521147093123595786065968067780634435606824611663185385724216007327176657596994297137941855874112343130}{379961412541938970853479297811729163336448006125874589881622683790120125482473115492798533516650941456771821} a^{13} - \frac{156650922244746623234783997396972368900074533826830112326360632627518144727296519234225957240054802844136369}{379961412541938970853479297811729163336448006125874589881622683790120125482473115492798533516650941456771821} a^{12} - \frac{177877094492499998824174557102537347154089503840660486432025995896237840983649868924776611699663766453316557}{759922825083877941706958595623458326672896012251749179763245367580240250964946230985597067033301882913543642} a^{11} + \frac{58439176108537870909965251018891684970907851452852062142855013061165428045438535315813043762387864196969046}{379961412541938970853479297811729163336448006125874589881622683790120125482473115492798533516650941456771821} a^{10} + \frac{186463991799775707526564045294429795363484316257864112249365075505033962437983946149847943222844580436820967}{379961412541938970853479297811729163336448006125874589881622683790120125482473115492798533516650941456771821} a^{9} - \frac{16859389866982015337925454879537934663055873595766993750230397740636468816927756544832608084908736617437893}{759922825083877941706958595623458326672896012251749179763245367580240250964946230985597067033301882913543642} a^{8} - \frac{43632907454002150193718054298043915152694232624438728914322980220815191357421575321713674384831483895631439}{379961412541938970853479297811729163336448006125874589881622683790120125482473115492798533516650941456771821} a^{7} + \frac{136595605904553299080794682259929794110483077642115488932430860583256563432019080053374700142577622137946498}{379961412541938970853479297811729163336448006125874589881622683790120125482473115492798533516650941456771821} a^{6} + \frac{266523358109621865185874730269741348723099658453793643997672624335585131803201744891646927936485405826302157}{759922825083877941706958595623458326672896012251749179763245367580240250964946230985597067033301882913543642} a^{5} + \frac{237020211367662862319130473719358778473827997581314671038094571523510449943903642315043911960275232215591901}{759922825083877941706958595623458326672896012251749179763245367580240250964946230985597067033301882913543642} a^{4} + \frac{237296570770618446982996121732061615409074299251343683754940601071642169822324467700654022733766709584352517}{759922825083877941706958595623458326672896012251749179763245367580240250964946230985597067033301882913543642} a^{3} + \frac{161083661033539331182574170773587791790837994024258201613969469110604786162581005224030859746143272283759417}{379961412541938970853479297811729163336448006125874589881622683790120125482473115492798533516650941456771821} a^{2} + \frac{16373337366607224647404392232495679598824257774426226455490787622476256725563891532724923446007096764853587}{379961412541938970853479297811729163336448006125874589881622683790120125482473115492798533516650941456771821} a - \frac{52970633673070145155371941212488353987621346431401612806389789493635663560132248677492207392085612570774201}{379961412541938970853479297811729163336448006125874589881622683790120125482473115492798533516650941456771821}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $16$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 260852514364000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 705438720 |
| The 225 conjugacy class representatives for t21n150 are not computed |
| Character table for t21n150 is not computed |
Intermediate fields
| 7.7.114477761.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/3.5.0.1}{5} }^{3}{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }$ | $21$ | ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.6.0.1}{6} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }{,}\,{\href{/LocalNumberField/11.5.0.1}{5} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{3}$ | $21$ | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{3}$ | R | R | ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }$ | ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/47.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }{,}\,{\href{/LocalNumberField/53.5.0.1}{5} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | $15{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $29$ | 29.4.0.1 | $x^{4} - x + 19$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 29.4.0.1 | $x^{4} - x + 19$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 29.4.0.1 | $x^{4} - x + 19$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 29.9.6.1 | $x^{9} - 841 x^{3} + 73167$ | $3$ | $3$ | $6$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ | |
| $31$ | $\Q_{31}$ | $x + 7$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 31.2.1.2 | $x^{2} + 217$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 31.2.1.2 | $x^{2} + 217$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 31.4.0.1 | $x^{4} - 2 x + 17$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 31.4.2.1 | $x^{4} + 713 x^{2} + 138384$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 31.8.0.1 | $x^{8} - x + 22$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| $43$ | $\Q_{43}$ | $x + 9$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 43.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 43.3.2.2 | $x^{3} + 387$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 43.3.0.1 | $x^{3} - x + 10$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 43.12.0.1 | $x^{12} - x + 33$ | $1$ | $12$ | $0$ | $C_{12}$ | $[\ ]^{12}$ | |
| 193 | Data not computed | ||||||
| 271 | Data not computed | ||||||
| 4391 | Data not computed | ||||||
| 13782217 | Data not computed | ||||||