Normalized defining polynomial
\( x^{21} - 2 x^{20} - 194 x^{19} - 432 x^{18} + 14532 x^{17} + 77484 x^{16} - 416296 x^{15} - 4108380 x^{14} - 1222109 x^{13} + 85669218 x^{12} + 277265294 x^{11} - 337233084 x^{10} - 3946856502 x^{9} - 8403565700 x^{8} + 2534336292 x^{7} + 45227028928 x^{6} + 88584013788 x^{5} + 63724676620 x^{4} - 24908039600 x^{3} - 78263767888 x^{2} - 51517639400 x - 11263360936 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[13, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(185306850122147272190396623464826655297124094208622198784=2^{38}\cdot 37^{2}\cdot 61^{2}\cdot 809^{8}\cdot 1879^{2}\cdot 14293^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $478.00$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 37, 61, 809, 1879, 14293$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{6}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{7}$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{8}$, $\frac{1}{4} a^{17} - \frac{1}{4} a^{9} - \frac{1}{2} a^{5}$, $\frac{1}{4} a^{18} - \frac{1}{4} a^{10} - \frac{1}{2} a^{6}$, $\frac{1}{4} a^{19} - \frac{1}{4} a^{11} - \frac{1}{2} a^{7}$, $\frac{1}{297864492793304195228180188989593892617983516374178243253860583575161093959960649487717541731483874246332} a^{20} - \frac{1959819389686430098318229110304407185422085625642201611092590467360192342504827023974707924947345290875}{148932246396652097614090094494796946308991758187089121626930291787580546979980324743858770865741937123166} a^{19} + \frac{1762252236591675556518859437701035660666465057660503393536913500123072142804992897954260340993350056867}{148932246396652097614090094494796946308991758187089121626930291787580546979980324743858770865741937123166} a^{18} - \frac{7796416760592958803863422374250347842173999356682440407300790794759554122553633957759019579453956241307}{74466123198326048807045047247398473154495879093544560813465145893790273489990162371929385432870968561583} a^{17} + \frac{13221746625987964403043133274450919959204011067522903193531662719758735456589723314835999945725301788374}{74466123198326048807045047247398473154495879093544560813465145893790273489990162371929385432870968561583} a^{16} + \frac{3970947405578941536235144486979507596430378809302267544393073909386483037965169746015725003621396973271}{148932246396652097614090094494796946308991758187089121626930291787580546979980324743858770865741937123166} a^{15} + \frac{22500010717212113954612809733060268971734401625249708603416717028629759952114585540078084557785902736561}{148932246396652097614090094494796946308991758187089121626930291787580546979980324743858770865741937123166} a^{14} - \frac{17394628046668692323370036560584418888500769474234971547481300280802433794274228328341586279103191345045}{148932246396652097614090094494796946308991758187089121626930291787580546979980324743858770865741937123166} a^{13} + \frac{23203098147585911734297548311649224352177056372771947310305664903395007924239094384584115529581106828599}{297864492793304195228180188989593892617983516374178243253860583575161093959960649487717541731483874246332} a^{12} - \frac{2841604949447651276738142455415555621431533975289964654322233090281175935409289881766444480068409118077}{148932246396652097614090094494796946308991758187089121626930291787580546979980324743858770865741937123166} a^{11} - \frac{12669314086805348126058569792783127820875183064611889731219578118234962210899501705563588628358792010023}{148932246396652097614090094494796946308991758187089121626930291787580546979980324743858770865741937123166} a^{10} - \frac{2873288917719661865285362395105897638438177737699146587274110490535536270216743580296377414346629374955}{74466123198326048807045047247398473154495879093544560813465145893790273489990162371929385432870968561583} a^{9} - \frac{20145044923785648611484371268832867723318187740686809884712147835105950203735612423093272535782946878313}{148932246396652097614090094494796946308991758187089121626930291787580546979980324743858770865741937123166} a^{8} - \frac{48103619739626267397652781018778391123559783577151246458201354903247778937576432012859745744333481825467}{148932246396652097614090094494796946308991758187089121626930291787580546979980324743858770865741937123166} a^{7} - \frac{62266076760091361447702462925230666270031684160421070974505109967103655749329861096336688958568873132831}{148932246396652097614090094494796946308991758187089121626930291787580546979980324743858770865741937123166} a^{6} + \frac{32810398504045417100948107010416205402024576903961012707953013955021045421662794346434549134530352260517}{148932246396652097614090094494796946308991758187089121626930291787580546979980324743858770865741937123166} a^{5} + \frac{34018726506474442583888241936855152359750235085365448464476202221421447930412782501214590155683689648800}{74466123198326048807045047247398473154495879093544560813465145893790273489990162371929385432870968561583} a^{4} + \frac{26746276877538255807899031578503716066829324791201690616818105291262196459652586744915066209224979845454}{74466123198326048807045047247398473154495879093544560813465145893790273489990162371929385432870968561583} a^{3} + \frac{35198581679052197987892784647056601004493230731677409708517646014187531502065839847408693007433891229548}{74466123198326048807045047247398473154495879093544560813465145893790273489990162371929385432870968561583} a^{2} - \frac{11675183540809863612833268979408898540525173009594715020310111562792206328004825967345588751293329491747}{74466123198326048807045047247398473154495879093544560813465145893790273489990162371929385432870968561583} a - \frac{28139831739450774863800540894791659401978740325877721854261694882377155742087015069738563503101249552214}{74466123198326048807045047247398473154495879093544560813465145893790273489990162371929385432870968561583}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $16$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 926049488030000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 2939328 |
| The 60 conjugacy class representatives for t21n126 are not computed |
| Character table for t21n126 is not computed |
Intermediate fields
| 7.7.670188544.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $21$ | $21$ | $21$ | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | $21$ | $21$ | ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | ${\href{/LocalNumberField/31.9.0.1}{9} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{4}$ | R | ${\href{/LocalNumberField/41.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/43.9.0.1}{9} }{,}\,{\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ | ${\href{/LocalNumberField/53.9.0.1}{9} }{,}\,{\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.8.8 | $x^{4} + 4 x + 2$ | $4$ | $1$ | $8$ | $S_4$ | $[8/3, 8/3]_{3}^{2}$ |
| 2.8.22.131 | $x^{8} + 12 x^{6} + 8 x^{5} + 56$ | $8$ | $1$ | $22$ | $\textrm{GL(2,3)}$ | $[8/3, 8/3, 7/2]_{3}^{2}$ | |
| 2.9.8.1 | $x^{9} - 2$ | $9$ | $1$ | $8$ | $(C_9:C_3):C_2$ | $[\ ]_{9}^{6}$ | |
| $37$ | 37.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 37.3.2.3 | $x^{3} - 148$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 37.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 37.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 37.9.0.1 | $x^{9} - 3 x + 5$ | $1$ | $9$ | $0$ | $C_9$ | $[\ ]^{9}$ | |
| $61$ | 61.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 61.3.2.2 | $x^{3} + 122$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 61.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 61.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 61.8.0.1 | $x^{8} - x + 17$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| 809 | Data not computed | ||||||
| 1879 | Data not computed | ||||||
| 14293 | Data not computed | ||||||