Normalized defining polynomial
\( x^{21} - 6 x^{19} - 4 x^{18} - 63 x^{17} - 84 x^{16} + 269 x^{15} + 594 x^{14} + 1692 x^{13} + 3544 x^{12} + 54 x^{11} - 9804 x^{10} - 22883 x^{9} - 42156 x^{8} - 52446 x^{7} - 27556 x^{6} + 17064 x^{5} + 39024 x^{4} + 29536 x^{3} + 12096 x^{2} + 2688 x + 256 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[13, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(165492619661247656369149666348223877660672=2^{14}\cdot 3^{21}\cdot 149^{6}\cdot 211^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $91.79$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 149, 211$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{2}$, $\frac{1}{8} a^{15} - \frac{1}{4} a^{13} - \frac{1}{2} a^{12} + \frac{1}{8} a^{11} - \frac{1}{2} a^{10} + \frac{1}{8} a^{9} + \frac{1}{4} a^{8} - \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{3}{8} a^{3} - \frac{1}{2} a^{2} - \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{64} a^{16} + \frac{1}{32} a^{15} - \frac{5}{32} a^{14} + \frac{1}{8} a^{13} + \frac{17}{64} a^{12} + \frac{7}{32} a^{11} - \frac{31}{64} a^{10} - \frac{3}{16} a^{9} + \frac{3}{16} a^{8} - \frac{13}{32} a^{6} + \frac{13}{64} a^{4} - \frac{9}{32} a^{3} + \frac{11}{32} a^{2} - \frac{3}{8} a + \frac{3}{8}$, $\frac{1}{512} a^{17} + \frac{9}{256} a^{15} - \frac{17}{128} a^{14} - \frac{95}{512} a^{13} + \frac{51}{128} a^{12} + \frac{133}{512} a^{11} + \frac{57}{256} a^{10} + \frac{17}{128} a^{9} - \frac{15}{64} a^{8} - \frac{125}{256} a^{7} + \frac{53}{128} a^{6} - \frac{19}{512} a^{5} - \frac{51}{128} a^{4} - \frac{67}{256} a^{3} - \frac{17}{128} a^{2} - \frac{15}{64} a - \frac{11}{32}$, $\frac{1}{4096} a^{18} - \frac{1}{2048} a^{17} + \frac{9}{2048} a^{16} - \frac{13}{512} a^{15} + \frac{553}{4096} a^{14} + \frac{197}{2048} a^{13} + \frac{749}{4096} a^{12} + \frac{237}{512} a^{11} - \frac{21}{128} a^{10} + \frac{1}{16} a^{9} + \frac{1019}{2048} a^{8} - \frac{103}{512} a^{7} + \frac{1093}{4096} a^{6} + \frac{429}{2048} a^{5} - \frac{119}{2048} a^{4} + \frac{89}{512} a^{3} - \frac{95}{256} a^{2} + \frac{9}{64} a + \frac{43}{128}$, $\frac{1}{32768} a^{19} - \frac{1}{8192} a^{18} + \frac{11}{16384} a^{17} - \frac{35}{8192} a^{16} + \frac{761}{32768} a^{15} - \frac{601}{4096} a^{14} - \frac{4135}{32768} a^{13} - \frac{3897}{16384} a^{12} + \frac{1001}{2048} a^{11} + \frac{153}{512} a^{10} - \frac{5381}{16384} a^{9} - \frac{3273}{8192} a^{8} - \frac{1355}{32768} a^{7} + \frac{173}{2048} a^{6} - \frac{7121}{16384} a^{5} - \frac{727}{8192} a^{4} - \frac{87}{256} a^{3} + \frac{497}{1024} a^{2} - \frac{121}{1024} a - \frac{171}{512}$, $\frac{1}{262144} a^{20} + \frac{1}{131072} a^{19} - \frac{1}{131072} a^{18} - \frac{1}{32768} a^{17} - \frac{79}{262144} a^{16} - \frac{121}{131072} a^{15} - \frac{215}{262144} a^{14} + \frac{41}{65536} a^{13} + \frac{505}{65536} a^{12} + \frac{237}{8192} a^{11} + \frac{7611}{131072} a^{10} + \frac{645}{8192} a^{9} + \frac{18397}{262144} a^{8} - \frac{2681}{131072} a^{7} - \frac{31585}{131072} a^{6} + \frac{13531}{32768} a^{5} - \frac{3573}{32768} a^{4} - \frac{567}{8192} a^{3} - \frac{211}{8192} a^{2} - \frac{11}{2048} a - \frac{1}{2048}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $16$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 166762897303000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 705438720 |
| The 246 conjugacy class representatives for t21n151 are not computed |
| Character table for t21n151 is not computed |
Intermediate fields
| 7.7.988410721.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.14.0.1}{14} }{,}\,{\href{/LocalNumberField/5.7.0.1}{7} }$ | ${\href{/LocalNumberField/7.14.0.1}{14} }{,}\,{\href{/LocalNumberField/7.7.0.1}{7} }$ | $15{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | ${\href{/LocalNumberField/17.14.0.1}{14} }{,}\,{\href{/LocalNumberField/17.7.0.1}{7} }$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }$ | ${\href{/LocalNumberField/29.14.0.1}{14} }{,}\,{\href{/LocalNumberField/29.7.0.1}{7} }$ | ${\href{/LocalNumberField/31.14.0.1}{14} }{,}\,{\href{/LocalNumberField/31.7.0.1}{7} }$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.12.0.1}{12} }{,}\,{\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | ${\href{/LocalNumberField/43.14.0.1}{14} }{,}\,{\href{/LocalNumberField/43.7.0.1}{7} }$ | $21$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 2.2.2.2 | $x^{2} + 2 x - 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.5.0.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 2.10.10.10 | $x^{10} - 11 x^{8} + 10 x^{6} - 62 x^{4} + 21 x^{2} - 55$ | $2$ | $5$ | $10$ | $C_2 \times (C_2^4 : C_5)$ | $[2, 2, 2, 2, 2]^{5}$ | |
| 3 | Data not computed | ||||||
| $149$ | $\Q_{149}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 149.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 149.3.0.1 | $x^{3} - x + 18$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 149.6.0.1 | $x^{6} - x + 14$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 149.9.6.1 | $x^{9} - 22201 x^{3} + 59543082$ | $3$ | $3$ | $6$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ | |
| 211 | Data not computed | ||||||