Normalized defining polynomial
\( x^{21} - 3 x^{19} - 2 x^{18} - 108 x^{17} - 144 x^{16} + 195 x^{15} + 486 x^{14} + 3321 x^{13} + 8064 x^{12} + 1674 x^{11} - 17508 x^{10} - 42797 x^{9} - 79956 x^{8} - 97365 x^{7} - 40522 x^{6} + 56700 x^{5} + 101304 x^{4} + 74256 x^{3} + 30240 x^{2} + 6720 x + 640 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[13, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(16463709752408337616228606991569162841980108800=2^{15}\cdot 3^{21}\cdot 5^{2}\cdot 7^{12}\cdot 173^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $158.78$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 7, 173$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{13} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{8} a^{15} - \frac{3}{8} a^{13} + \frac{1}{4} a^{12} + \frac{3}{8} a^{9} - \frac{1}{4} a^{8} + \frac{1}{8} a^{7} - \frac{1}{2} a^{6} - \frac{1}{4} a^{5} - \frac{1}{2} a^{4} + \frac{3}{8} a^{3} - \frac{1}{2} a^{2} + \frac{3}{8} a + \frac{1}{4}$, $\frac{1}{64} a^{16} + \frac{1}{32} a^{15} - \frac{7}{64} a^{14} + \frac{1}{4} a^{13} + \frac{7}{16} a^{12} - \frac{1}{8} a^{11} + \frac{3}{64} a^{10} + \frac{3}{16} a^{9} - \frac{7}{64} a^{8} - \frac{15}{32} a^{7} - \frac{5}{32} a^{6} - \frac{3}{8} a^{5} + \frac{3}{64} a^{4} + \frac{9}{32} a^{3} + \frac{23}{64} a^{2} - \frac{7}{16} a + \frac{7}{16}$, $\frac{1}{512} a^{17} + \frac{21}{512} a^{15} - \frac{33}{256} a^{14} - \frac{17}{128} a^{13} + \frac{211}{512} a^{11} + \frac{67}{256} a^{10} + \frac{1}{512} a^{9} - \frac{11}{32} a^{8} + \frac{89}{256} a^{7} - \frac{1}{128} a^{6} - \frac{77}{512} a^{5} - \frac{13}{128} a^{4} + \frac{211}{512} a^{3} - \frac{85}{256} a^{2} - \frac{11}{128} a - \frac{23}{64}$, $\frac{1}{4096} a^{18} - \frac{1}{2048} a^{17} + \frac{21}{4096} a^{16} - \frac{27}{1024} a^{15} + \frac{9}{64} a^{14} + \frac{17}{512} a^{13} + \frac{1747}{4096} a^{12} - \frac{57}{128} a^{11} + \frac{1781}{4096} a^{10} - \frac{89}{2048} a^{9} - \frac{247}{2048} a^{8} - \frac{173}{512} a^{7} - \frac{581}{4096} a^{6} - \frac{205}{2048} a^{5} - \frac{1221}{4096} a^{4} + \frac{27}{256} a^{3} + \frac{37}{512} a^{2} - \frac{19}{128} a + \frac{87}{256}$, $\frac{1}{32768} a^{19} - \frac{1}{8192} a^{18} + \frac{25}{32768} a^{17} - \frac{75}{16384} a^{16} + \frac{99}{4096} a^{15} - \frac{639}{4096} a^{14} - \frac{2621}{32768} a^{13} + \frac{7581}{16384} a^{12} + \frac{9525}{32768} a^{11} - \frac{2983}{8192} a^{10} - \frac{69}{16384} a^{9} + \frac{925}{8192} a^{8} + \frac{6283}{32768} a^{7} + \frac{303}{2048} a^{6} - \frac{8593}{32768} a^{5} - \frac{6755}{16384} a^{4} + \frac{953}{4096} a^{3} + \frac{437}{2048} a^{2} + \frac{419}{2048} a - \frac{343}{1024}$, $\frac{1}{262144} a^{20} + \frac{1}{131072} a^{19} + \frac{1}{262144} a^{18} - \frac{27}{65536} a^{16} - \frac{45}{32768} a^{15} - \frac{525}{262144} a^{14} - \frac{141}{65536} a^{13} + \frac{2193}{262144} a^{12} + \frac{6225}{131072} a^{11} + \frac{13287}{131072} a^{10} + \frac{4455}{32768} a^{9} + \frac{28483}{262144} a^{8} - \frac{11495}{131072} a^{7} + \frac{118799}{262144} a^{6} - \frac{16267}{65536} a^{5} - \frac{18359}{65536} a^{4} - \frac{89}{512} a^{3} - \frac{1055}{16384} a^{2} - \frac{55}{4096} a - \frac{5}{4096}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $16$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 32075783443900000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 11757312 |
| The 168 conjugacy class representatives for t21n142 are not computed |
| Character table for t21n142 is not computed |
Intermediate fields
| 7.7.12431698517.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | ${\href{/LocalNumberField/13.14.0.1}{14} }{,}\,{\href{/LocalNumberField/13.7.0.1}{7} }$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/29.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/31.9.0.1}{9} }{,}\,{\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/37.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.14.0.1}{14} }{,}\,{\href{/LocalNumberField/41.7.0.1}{7} }$ | ${\href{/LocalNumberField/43.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/47.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ | $18{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{3}$ | $18{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 2.2.3.2 | $x^{2} + 6$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.6.0.1 | $x^{6} - x + 1$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 2.12.12.14 | $x^{12} + 4 x^{10} + 21 x^{8} - 16 x^{6} + 43 x^{4} + 12 x^{2} - 1$ | $2$ | $6$ | $12$ | 12T134 | $[2, 2, 2, 2, 2, 2]^{6}$ | |
| 3 | Data not computed | ||||||
| $5$ | 5.3.2.1 | $x^{3} - 5$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 5.6.0.1 | $x^{6} - x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 5.12.0.1 | $x^{12} - x^{3} - 2 x + 3$ | $1$ | $12$ | $0$ | $C_{12}$ | $[\ ]^{12}$ | |
| 7 | Data not computed | ||||||
| 173 | Data not computed | ||||||