Normalized defining polynomial
\( x^{21} - 9 x^{20} - 146 x^{19} + 1663 x^{18} + 6444 x^{17} - 120513 x^{16} + 24728 x^{15} + 4333895 x^{14} - 10770034 x^{13} - 77346272 x^{12} + 363714772 x^{11} + 449146293 x^{10} - 5339902544 x^{9} + 5605479903 x^{8} + 31832784319 x^{7} - 92799106525 x^{6} + 13704420748 x^{5} + 315429108004 x^{4} - 611832567789 x^{3} + 533344311045 x^{2} - 233651622785 x + 41803539011 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[13, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(159325922263652982846672112441363388812564826055662569=577^{10}\cdot 661^{2}\cdot 40087^{2}\cdot 235537^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $341.54$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $577, 661, 40087, 235537$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{13} a^{19} + \frac{5}{13} a^{18} - \frac{2}{13} a^{17} + \frac{3}{13} a^{16} - \frac{6}{13} a^{15} + \frac{5}{13} a^{14} + \frac{5}{13} a^{13} + \frac{5}{13} a^{12} - \frac{4}{13} a^{11} - \frac{1}{13} a^{10} - \frac{6}{13} a^{9} - \frac{4}{13} a^{8} + \frac{5}{13} a^{7} + \frac{5}{13} a^{6} - \frac{4}{13} a^{5} - \frac{6}{13} a^{4} + \frac{2}{13} a^{3} - \frac{3}{13} a^{2} + \frac{1}{13} a$, $\frac{1}{7772552350043193930469648223367180070596058856269526848188115143895912502718982640359453457} a^{20} + \frac{249749291963298633322941122157884146769372785376918314941394946983513821156994773533901595}{7772552350043193930469648223367180070596058856269526848188115143895912502718982640359453457} a^{19} - \frac{2429330762681287616995033280868575996757212465058158649655617740401249808834048048454499901}{7772552350043193930469648223367180070596058856269526848188115143895912502718982640359453457} a^{18} - \frac{353190639032722165444788976622678517661347219186099525524187349378681518916718141636526024}{7772552350043193930469648223367180070596058856269526848188115143895912502718982640359453457} a^{17} - \frac{997326229377836082116597952499585872001187093729268374848733858558229920233125313607350947}{7772552350043193930469648223367180070596058856269526848188115143895912502718982640359453457} a^{16} - \frac{2293775052354565900481915758058130277092678796750985904221487404554500605512290417446571327}{7772552350043193930469648223367180070596058856269526848188115143895912502718982640359453457} a^{15} - \frac{390182752524801883747624397742042535326830164413216656580221974057588862114765960880754722}{7772552350043193930469648223367180070596058856269526848188115143895912502718982640359453457} a^{14} - \frac{3009006085689203152875130256004970938587148801964015936914310524421681498534423421584245874}{7772552350043193930469648223367180070596058856269526848188115143895912502718982640359453457} a^{13} - \frac{510745172258562568087253283527651037009158355593537300084039143043252832046880993475618590}{7772552350043193930469648223367180070596058856269526848188115143895912502718982640359453457} a^{12} - \frac{278717312706173661081784388927092078093427939830254078450682441619278491728848618895947452}{7772552350043193930469648223367180070596058856269526848188115143895912502718982640359453457} a^{11} - \frac{245489876059577824031748915576087203843109714360722707952848349914779199136435711346795909}{597888642311014917728434478720552313122773758174578988322162703376608654055306356950727189} a^{10} + \frac{656647457337634063385817425741590403052277594560943511544240164284170013800760155916325071}{7772552350043193930469648223367180070596058856269526848188115143895912502718982640359453457} a^{9} + \frac{536292959332406120675976199743246118895755677702647647957389276266989739152322779871844473}{7772552350043193930469648223367180070596058856269526848188115143895912502718982640359453457} a^{8} + \frac{66331439018188462312964190384040984754397165784606821249587907555534597711502836412499917}{268019046553213583809298214598868278296415822629983684420279832548134913886861470357222533} a^{7} - \frac{2101943084426744039509948900437923272933864799410988740213625450764396071376794959280128467}{7772552350043193930469648223367180070596058856269526848188115143895912502718982640359453457} a^{6} + \frac{2492277430267896791353694521195955726056645527857913406919361662660240243793542786445012448}{7772552350043193930469648223367180070596058856269526848188115143895912502718982640359453457} a^{5} + \frac{1755883986483322378524435527318313292990475400726761380448839980564787906041059509577447082}{7772552350043193930469648223367180070596058856269526848188115143895912502718982640359453457} a^{4} - \frac{2323343728771060999903926561412899989694759466369121450897178358336582282208621384930574615}{7772552350043193930469648223367180070596058856269526848188115143895912502718982640359453457} a^{3} - \frac{1598942202582629757127448458946914958040456841090784014881007437033737489215219892885472133}{7772552350043193930469648223367180070596058856269526848188115143895912502718982640359453457} a^{2} - \frac{3829841336804949037814918837055712917818829843172201396621792628302614520600148666581868427}{7772552350043193930469648223367180070596058856269526848188115143895912502718982640359453457} a + \frac{198267190380572075489945986419020934709009342898835507161278157985496842433993650321194737}{597888642311014917728434478720552313122773758174578988322162703376608654055306356950727189}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $16$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 7562859432140000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1959552 |
| The 168 conjugacy class representatives for t21n124 are not computed |
| Character table for t21n124 is not computed |
Intermediate fields
| 7.7.192100033.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $21$ | $21$ | ${\href{/LocalNumberField/5.6.0.1}{6} }{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{3}$ | $21$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | $21$ | $21$ | $21$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | ${\href{/LocalNumberField/31.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/53.7.0.1}{7} }^{3}$ | $21$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 577 | Data not computed | ||||||
| 661 | Data not computed | ||||||
| 40087 | Data not computed | ||||||
| 235537 | Data not computed | ||||||