Normalized defining polynomial
\( x^{21} + 36 x^{19} - 24 x^{18} - 108 x^{17} + 144 x^{16} - 7608 x^{15} + 15120 x^{14} + 6768 x^{13} - 42688 x^{12} + 402624 x^{11} - 1212288 x^{10} - 86528 x^{9} + 5658624 x^{8} - 8884608 x^{7} + 761600 x^{6} + 13312512 x^{5} - 18994176 x^{4} + 13400064 x^{3} - 5419008 x^{2} + 1204224 x - 114688 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[13, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(14848842777743746917666586040678292200394276864=2^{14}\cdot 3^{21}\cdot 7^{3}\cdot 43^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $158.00$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 43$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2}$, $\frac{1}{2} a^{3}$, $\frac{1}{4} a^{4}$, $\frac{1}{4} a^{5}$, $\frac{1}{8} a^{6}$, $\frac{1}{8} a^{7}$, $\frac{1}{16} a^{8}$, $\frac{1}{16} a^{9}$, $\frac{1}{32} a^{10}$, $\frac{1}{32} a^{11}$, $\frac{1}{64} a^{12}$, $\frac{1}{64} a^{13}$, $\frac{1}{128} a^{14}$, $\frac{1}{3584} a^{15} - \frac{3}{448} a^{13} + \frac{1}{224} a^{12} - \frac{1}{128} a^{11} - \frac{1}{448} a^{9} + \frac{1}{224} a^{8} + \frac{9}{224} a^{7} - \frac{1}{28} a^{6} - \frac{3}{28} a^{5} - \frac{1}{28} a^{4} + \frac{3}{14} a^{3} - \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{14336} a^{16} - \frac{1}{7168} a^{15} + \frac{1}{448} a^{14} + \frac{1}{1792} a^{13} + \frac{13}{3584} a^{12} + \frac{3}{256} a^{11} + \frac{27}{1792} a^{10} - \frac{13}{448} a^{9} - \frac{3}{128} a^{8} - \frac{13}{448} a^{7} + \frac{3}{56} a^{6} - \frac{9}{112} a^{5} + \frac{1}{14} a^{4} + \frac{1}{7} a^{3} + \frac{3}{16} a^{2} - \frac{1}{4} a - \frac{1}{4}$, $\frac{1}{57344} a^{17} - \frac{1}{14336} a^{15} - \frac{19}{7168} a^{14} - \frac{71}{14336} a^{13} + \frac{13}{3584} a^{12} - \frac{99}{7168} a^{11} + \frac{1}{3584} a^{10} + \frac{111}{3584} a^{9} - \frac{25}{896} a^{8} + \frac{11}{896} a^{7} - \frac{3}{64} a^{6} - \frac{27}{224} a^{5} - \frac{3}{28} a^{4} + \frac{85}{448} a^{3} + \frac{1}{32} a^{2} + \frac{1}{16} a + \frac{3}{8}$, $\frac{1}{229376} a^{18} - \frac{1}{114688} a^{17} - \frac{1}{57344} a^{16} - \frac{1}{14336} a^{15} + \frac{5}{57344} a^{14} - \frac{25}{4096} a^{13} + \frac{15}{4096} a^{12} + \frac{25}{3584} a^{11} + \frac{109}{14336} a^{10} - \frac{193}{7168} a^{9} - \frac{19}{3584} a^{8} - \frac{1}{16} a^{7} + \frac{3}{64} a^{6} + \frac{3}{448} a^{5} - \frac{171}{1792} a^{4} + \frac{41}{448} a^{3} - \frac{1}{4} a^{2} + \frac{1}{16} a - \frac{3}{16}$, $\frac{1}{917504} a^{19} - \frac{1}{114688} a^{17} - \frac{3}{114688} a^{16} - \frac{3}{229376} a^{15} + \frac{139}{57344} a^{14} - \frac{35}{16384} a^{13} + \frac{205}{57344} a^{12} - \frac{139}{57344} a^{11} - \frac{3}{1024} a^{10} + \frac{59}{3584} a^{9} - \frac{131}{7168} a^{8} + \frac{11}{256} a^{7} + \frac{45}{1792} a^{6} - \frac{21}{1024} a^{5} - \frac{89}{3584} a^{4} - \frac{15}{896} a^{3} - \frac{7}{64} a^{2} - \frac{17}{64} a + \frac{13}{32}$, $\frac{1}{3670016} a^{20} - \frac{1}{1835008} a^{19} - \frac{1}{458752} a^{18} - \frac{1}{458752} a^{17} + \frac{9}{917504} a^{16} + \frac{25}{458752} a^{15} + \frac{991}{458752} a^{14} + \frac{417}{114688} a^{13} + \frac{141}{32768} a^{12} - \frac{841}{114688} a^{11} + \frac{5}{896} a^{10} + \frac{209}{28672} a^{9} - \frac{291}{14336} a^{8} + \frac{435}{7168} a^{7} - \frac{251}{28672} a^{6} - \frac{227}{7168} a^{5} - \frac{325}{7168} a^{4} - \frac{65}{896} a^{3} + \frac{61}{256} a^{2} + \frac{31}{64} a + \frac{19}{64}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $16$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 8586842734230000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1959552 |
| The 333 conjugacy class representatives for t21n123 are not computed |
| Character table for t21n123 is not computed |
Intermediate fields
| 7.7.6321363049.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | $21$ | R | ${\href{/LocalNumberField/11.14.0.1}{14} }{,}\,{\href{/LocalNumberField/11.7.0.1}{7} }$ | ${\href{/LocalNumberField/13.14.0.1}{14} }{,}\,{\href{/LocalNumberField/13.7.0.1}{7} }$ | ${\href{/LocalNumberField/17.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/19.14.0.1}{14} }{,}\,{\href{/LocalNumberField/19.7.0.1}{7} }$ | ${\href{/LocalNumberField/23.14.0.1}{14} }{,}\,{\href{/LocalNumberField/23.7.0.1}{7} }$ | ${\href{/LocalNumberField/29.14.0.1}{14} }{,}\,{\href{/LocalNumberField/29.7.0.1}{7} }$ | ${\href{/LocalNumberField/31.14.0.1}{14} }{,}\,{\href{/LocalNumberField/31.7.0.1}{7} }$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{7}$ | ${\href{/LocalNumberField/41.7.0.1}{7} }^{3}$ | R | ${\href{/LocalNumberField/47.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/53.14.0.1}{14} }{,}\,{\href{/LocalNumberField/53.7.0.1}{7} }$ | $21$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.7.0.1 | $x^{7} - x + 1$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ |
| 2.14.14.29 | $x^{14} + 2 x^{13} - x^{12} + 2 x^{7} + 2 x^{5} + 2 x^{3} + 2 x - 1$ | $2$ | $7$ | $14$ | $C_2 \wr C_7$ | $[2, 2, 2, 2, 2, 2]^{14}$ | |
| 3 | Data not computed | ||||||
| $7$ | $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 7.3.2.3 | $x^{3} - 28$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 43 | Data not computed | ||||||