Normalized defining polynomial
\( x^{21} - 6 x^{19} - 4 x^{18} - 81 x^{17} - 108 x^{16} + 342 x^{15} + 756 x^{14} + 2610 x^{13} + 5728 x^{12} - 216 x^{11} - 16944 x^{10} - 42271 x^{9} - 84348 x^{8} - 108792 x^{7} - 59304 x^{6} + 31968 x^{5} + 77472 x^{4} + 59008 x^{3} + 24192 x^{2} + 5376 x + 512 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[13, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1482492148218678638085477396433249728399446900736=2^{39}\cdot 3^{39}\cdot 13^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $196.72$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{9} - \frac{1}{2} a$, $\frac{1}{4} a^{14} - \frac{1}{2} a^{12} - \frac{1}{4} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} + \frac{1}{4} a^{2}$, $\frac{1}{8} a^{15} - \frac{1}{4} a^{13} - \frac{1}{2} a^{12} - \frac{1}{8} a^{11} - \frac{1}{2} a^{10} + \frac{1}{4} a^{9} - \frac{1}{2} a^{8} + \frac{1}{4} a^{7} + \frac{1}{8} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{64} a^{16} + \frac{1}{32} a^{15} + \frac{3}{32} a^{14} + \frac{1}{8} a^{13} - \frac{1}{64} a^{12} - \frac{7}{32} a^{11} + \frac{9}{32} a^{10} - \frac{1}{8} a^{9} - \frac{15}{32} a^{8} + \frac{1}{16} a^{7} - \frac{1}{2} a^{6} + \frac{1}{4} a^{5} - \frac{31}{64} a^{4} + \frac{3}{32} a^{3} + \frac{7}{16} a^{2} - \frac{1}{4} a - \frac{1}{4}$, $\frac{1}{512} a^{17} + \frac{9}{256} a^{15} + \frac{15}{128} a^{14} - \frac{113}{512} a^{13} - \frac{19}{128} a^{12} - \frac{113}{256} a^{11} + \frac{53}{128} a^{10} + \frac{105}{256} a^{9} - \frac{1}{4} a^{8} - \frac{17}{64} a^{7} + \frac{1}{32} a^{6} - \frac{127}{512} a^{5} + \frac{1}{128} a^{4} - \frac{3}{16} a^{3} - \frac{1}{64} a^{2} - \frac{15}{32} a + \frac{5}{16}$, $\frac{1}{4096} a^{18} - \frac{1}{2048} a^{17} + \frac{9}{2048} a^{16} - \frac{13}{512} a^{15} - \frac{489}{4096} a^{14} + \frac{203}{2048} a^{13} - \frac{805}{2048} a^{12} - \frac{93}{512} a^{11} + \frac{21}{2048} a^{10} - \frac{329}{1024} a^{9} - \frac{177}{512} a^{8} - \frac{15}{128} a^{7} + \frac{865}{4096} a^{6} - \frac{127}{2048} a^{5} - \frac{205}{512} a^{4} + \frac{7}{512} a^{3} + \frac{1}{128} a^{2} + \frac{9}{32} a - \frac{21}{64}$, $\frac{1}{32768} a^{19} - \frac{1}{8192} a^{18} + \frac{11}{16384} a^{17} - \frac{35}{8192} a^{16} + \frac{743}{32768} a^{15} + \frac{429}{4096} a^{14} - \frac{2235}{16384} a^{13} + \frac{2667}{8192} a^{12} + \frac{2301}{16384} a^{11} + \frac{1105}{4096} a^{10} - \frac{205}{512} a^{9} - \frac{365}{2048} a^{8} - \frac{12511}{32768} a^{7} + \frac{161}{512} a^{6} - \frac{1307}{8192} a^{5} - \frac{1631}{4096} a^{4} - \frac{709}{2048} a^{3} + \frac{113}{512} a^{2} - \frac{121}{512} a + \frac{85}{256}$, $\frac{1}{262144} a^{20} + \frac{1}{131072} a^{19} - \frac{1}{131072} a^{18} - \frac{1}{32768} a^{17} - \frac{97}{262144} a^{16} - \frac{151}{131072} a^{15} - \frac{131}{131072} a^{14} + \frac{29}{32768} a^{13} + \frac{1537}{131072} a^{12} + \frac{2969}{65536} a^{11} + \frac{1471}{16384} a^{10} + \frac{1883}{16384} a^{9} + \frac{17985}{262144} a^{8} - \frac{24189}{131072} a^{7} + \frac{14149}{65536} a^{6} + \frac{421}{2048} a^{5} - \frac{3825}{8192} a^{4} + \frac{2963}{8192} a^{3} - \frac{211}{4096} a^{2} - \frac{11}{1024} a - \frac{1}{1024}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $16$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 115513437952000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 11757312 |
| The 168 conjugacy class representatives for t21n142 are not computed |
| Character table for t21n142 is not computed |
Intermediate fields
| 7.7.138584369664.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | $21$ | $18{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.9.0.1}{9} }{,}\,{\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | $18{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | ${\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | $18{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/59.9.0.1}{9} }{,}\,{\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 2.6.9.3 | $x^{6} - 4 x^{4} + 4 x^{2} + 24$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ | |
| 2.12.30.42 | $x^{12} - 6 x^{10} - 19 x^{8} - 12 x^{6} - 5 x^{4} + 18 x^{2} - 17$ | $4$ | $3$ | $30$ | 12T134 | $[2, 2, 2, 3, 7/2, 7/2, 7/2]^{3}$ | |
| 3 | Data not computed | ||||||
| $13$ | $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.6.5.5 | $x^{6} + 104$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 13.12.11.11 | $x^{12} + 6656$ | $12$ | $1$ | $11$ | $C_{12}$ | $[\ ]_{12}$ | |