Normalized defining polynomial
\( x^{21} + 15 x^{19} - 10 x^{18} - 540 x^{17} + 720 x^{16} - 6774 x^{15} + 13068 x^{14} + 74556 x^{13} - 220112 x^{12} + 892728 x^{11} - 2334288 x^{10} - 783346 x^{9} + 13135176 x^{8} - 39968658 x^{7} + 94308324 x^{6} - 155188008 x^{5} + 162971856 x^{4} - 106988384 x^{3} + 42662592 x^{2} - 9480576 x + 902912 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[13, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1403514779847325853897324257959386241063870491787264=2^{44}\cdot 3^{28}\cdot 809^{6}\cdot 3527^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $272.64$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 809, 3527$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{3} a^{3} - \frac{1}{3}$, $\frac{1}{3} a^{4} - \frac{1}{3} a$, $\frac{1}{3} a^{5} - \frac{1}{3} a^{2}$, $\frac{1}{9} a^{6} + \frac{1}{9} a^{3} - \frac{2}{9}$, $\frac{1}{9} a^{7} + \frac{1}{9} a^{4} - \frac{2}{9} a$, $\frac{1}{9} a^{8} + \frac{1}{9} a^{5} - \frac{2}{9} a^{2}$, $\frac{1}{27} a^{9} - \frac{1}{9} a^{3} + \frac{2}{27}$, $\frac{1}{27} a^{10} - \frac{1}{9} a^{4} + \frac{2}{27} a$, $\frac{1}{27} a^{11} - \frac{1}{9} a^{5} + \frac{2}{27} a^{2}$, $\frac{1}{81} a^{12} - \frac{1}{81} a^{9} - \frac{1}{27} a^{6} + \frac{5}{81} a^{3} - \frac{2}{81}$, $\frac{1}{162} a^{13} - \frac{1}{162} a^{12} + \frac{1}{81} a^{10} - \frac{1}{81} a^{9} + \frac{1}{27} a^{7} - \frac{1}{27} a^{6} - \frac{11}{81} a^{4} + \frac{11}{81} a^{3} - \frac{34}{81} a + \frac{34}{81}$, $\frac{1}{162} a^{14} - \frac{1}{162} a^{12} + \frac{1}{81} a^{11} - \frac{1}{81} a^{9} + \frac{1}{27} a^{8} - \frac{1}{27} a^{6} - \frac{11}{81} a^{5} + \frac{11}{81} a^{3} - \frac{34}{81} a^{2} + \frac{34}{81}$, $\frac{1}{1944} a^{15} + \frac{1}{648} a^{13} - \frac{1}{972} a^{12} + \frac{1}{81} a^{10} + \frac{17}{972} a^{9} - \frac{1}{18} a^{8} - \frac{1}{54} a^{7} + \frac{1}{243} a^{6} + \frac{1}{9} a^{5} + \frac{13}{81} a^{4} - \frac{17}{972} a^{3} + \frac{4}{9} a^{2} - \frac{91}{324} a + \frac{59}{486}$, $\frac{1}{15552} a^{16} - \frac{1}{7776} a^{15} - \frac{7}{5184} a^{14} - \frac{1}{486} a^{13} - \frac{17}{3888} a^{12} - \frac{1}{648} a^{11} - \frac{139}{7776} a^{10} - \frac{13}{1944} a^{9} + \frac{7}{432} a^{8} + \frac{19}{1944} a^{7} + \frac{25}{1944} a^{6} - \frac{7}{162} a^{5} - \frac{281}{7776} a^{4} + \frac{251}{3888} a^{3} + \frac{1009}{2592} a^{2} + \frac{667}{1944} a - \frac{797}{1944}$, $\frac{1}{124416} a^{17} - \frac{25}{124416} a^{15} + \frac{155}{62208} a^{14} + \frac{7}{3456} a^{13} - \frac{23}{3888} a^{12} + \frac{509}{62208} a^{11} + \frac{17}{1152} a^{10} - \frac{421}{31104} a^{9} - \frac{355}{7776} a^{8} + \frac{5}{576} a^{7} + \frac{199}{7776} a^{6} - \frac{5177}{62208} a^{5} + \frac{145}{1728} a^{4} - \frac{6049}{62208} a^{3} + \frac{7625}{31104} a^{2} - \frac{29}{64} a - \frac{2525}{7776}$, $\frac{1}{2985984} a^{18} - \frac{1}{497664} a^{17} + \frac{13}{995328} a^{16} - \frac{5}{82944} a^{15} + \frac{5}{124416} a^{14} + \frac{77}{124416} a^{13} - \frac{2977}{497664} a^{12} - \frac{281}{62208} a^{11} + \frac{1939}{248832} a^{10} - \frac{6871}{373248} a^{9} - \frac{6887}{124416} a^{8} + \frac{1315}{31104} a^{7} - \frac{697}{18432} a^{6} + \frac{1439}{248832} a^{5} + \frac{14317}{497664} a^{4} - \frac{1399}{62208} a^{3} + \frac{15725}{62208} a^{2} - \frac{935}{7776} a + \frac{34631}{93312}$, $\frac{1}{23887872} a^{19} - \frac{1}{5971968} a^{18} + \frac{1}{884736} a^{17} - \frac{17}{3981312} a^{16} - \frac{5}{497664} a^{15} + \frac{29}{331776} a^{14} - \frac{787}{1327104} a^{13} + \frac{1705}{663552} a^{12} - \frac{3175}{663552} a^{11} - \frac{527}{1492992} a^{10} - \frac{48227}{2985984} a^{9} + \frac{295}{55296} a^{8} + \frac{189149}{3981312} a^{7} + \frac{2567}{497664} a^{6} + \frac{154147}{1327104} a^{5} + \frac{9539}{73728} a^{4} + \frac{12757}{165888} a^{3} - \frac{37093}{82944} a^{2} + \frac{167711}{746496} a - \frac{176185}{373248}$, $\frac{1}{191102976} a^{20} - \frac{1}{95551488} a^{19} + \frac{19}{191102976} a^{18} - \frac{1}{3981312} a^{17} - \frac{37}{15925248} a^{16} + \frac{67}{7962624} a^{15} - \frac{185}{3538944} a^{14} + \frac{17}{98304} a^{13} + \frac{235}{5308416} a^{12} - \frac{29629}{23887872} a^{11} + \frac{170849}{23887872} a^{10} + \frac{62813}{5971968} a^{9} + \frac{1558733}{31850496} a^{8} - \frac{464135}{15925248} a^{7} - \frac{1265959}{31850496} a^{6} + \frac{341183}{2654208} a^{5} - \frac{183547}{2654208} a^{4} - \frac{41}{4608} a^{3} - \frac{1246459}{5971968} a^{2} - \frac{536461}{1492992} a - \frac{715321}{1492992}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $16$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 16363118441400000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 23514624 |
| The 132 conjugacy class representatives for t21n145 are not computed |
| Character table for t21n145 is not computed |
Intermediate fields
| 7.7.670188544.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | $21$ | ${\href{/LocalNumberField/7.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/11.9.0.1}{9} }{,}\,{\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{3}$ | $21$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.12.0.1}{12} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | ${\href{/LocalNumberField/31.9.0.1}{9} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/37.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }$ | ${\href{/LocalNumberField/41.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/47.9.0.1}{9} }{,}\,{\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 2.2.2.2 | $x^{2} + 2 x - 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.6.10.2 | $x^{6} + 2 x^{5} + 2 x^{4} + 2 x^{2} + 2$ | $6$ | $1$ | $10$ | $S_4$ | $[8/3, 8/3]_{3}^{2}$ | |
| 2.12.32.154 | $x^{12} + 4 x^{11} - 2 x^{10} - 4 x^{9} + 4 x^{8} + 4 x^{6} + 8 x^{5} - 6 x^{4} + 8 x^{3} - 4 x^{2} + 8 x + 6$ | $12$ | $1$ | $32$ | 12T140 | $[2, 8/3, 8/3, 3, 11/3, 11/3]_{3}^{2}$ | |
| 3 | Data not computed | ||||||
| 809 | Data not computed | ||||||
| 3527 | Data not computed | ||||||