Normalized defining polynomial
\( x^{21} - 24 x^{19} - 16 x^{18} + 135 x^{17} + 180 x^{16} + 519 x^{15} + 918 x^{14} - 4653 x^{13} + \cdots - 2176 \)
Invariants
| Degree: | $21$ |
| |
| Signature: | $[13, 4]$ |
| |
| Discriminant: |
\(10423848562958827406082788615011739523268608\)
\(\medspace = 2^{14}\cdot 3^{21}\cdot 17^{2}\cdot 29^{18}\)
|
| |
| Root discriminant: | \(111.81\) |
| |
| Galois root discriminant: | not computed | ||
| Ramified primes: |
\(2\), \(3\), \(17\), \(29\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{3}) \) | ||
| $\Aut(K/\Q)$: | $C_1$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{8}a^{15}-\frac{1}{2}a^{14}-\frac{1}{2}a^{13}-\frac{1}{8}a^{11}+\frac{3}{8}a^{9}+\frac{1}{4}a^{8}-\frac{1}{8}a^{7}-\frac{1}{2}a^{6}-\frac{1}{2}a^{3}-\frac{3}{8}a-\frac{1}{4}$, $\frac{1}{64}a^{16}+\frac{1}{32}a^{15}+\frac{1}{16}a^{14}-\frac{1}{8}a^{13}-\frac{25}{64}a^{12}+\frac{1}{32}a^{11}-\frac{13}{64}a^{10}+\frac{7}{16}a^{9}+\frac{3}{64}a^{8}+\frac{3}{32}a^{7}-\frac{1}{2}a^{6}+\frac{3}{8}a^{5}-\frac{5}{16}a^{4}+\frac{1}{8}a^{3}+\frac{5}{64}a^{2}+\frac{3}{16}a+\frac{5}{16}$, $\frac{1}{512}a^{17}-\frac{5}{32}a^{14}+\frac{183}{512}a^{13}-\frac{51}{128}a^{12}-\frac{209}{512}a^{11}-\frac{37}{256}a^{10}-\frac{117}{512}a^{9}+\frac{3}{8}a^{8}+\frac{5}{128}a^{7}-\frac{13}{64}a^{6}-\frac{17}{128}a^{5}+\frac{15}{32}a^{4}-\frac{11}{512}a^{3}+\frac{33}{256}a^{2}+\frac{63}{128}a+\frac{27}{64}$, $\frac{1}{69632}a^{18}-\frac{1}{2048}a^{17}+\frac{3}{1088}a^{16}-\frac{77}{4352}a^{15}+\frac{1623}{69632}a^{14}+\frac{12659}{34816}a^{13}+\frac{15239}{69632}a^{12}-\frac{2849}{8704}a^{11}+\frac{14239}{69632}a^{10}-\frac{13915}{34816}a^{9}-\frac{5067}{17408}a^{8}-\frac{1769}{4352}a^{7}-\frac{6685}{17408}a^{6}+\frac{1087}{8704}a^{5}+\frac{8469}{69632}a^{4}+\frac{567}{8704}a^{3}+\frac{207}{512}a^{2}-\frac{45}{128}a+\frac{85}{256}$, $\frac{1}{557056}a^{19}-\frac{1}{139264}a^{18}+\frac{65}{139264}a^{17}-\frac{261}{34816}a^{16}+\frac{16887}{557056}a^{15}+\frac{11427}{69632}a^{14}-\frac{965}{557056}a^{13}+\frac{6117}{278528}a^{12}-\frac{218001}{557056}a^{11}+\frac{55771}{139264}a^{10}-\frac{231}{512}a^{9}+\frac{1273}{4096}a^{8}+\frac{69355}{139264}a^{7}-\frac{45}{17408}a^{6}-\frac{152795}{557056}a^{5}-\frac{105705}{278528}a^{4}-\frac{33191}{69632}a^{3}+\frac{815}{2048}a^{2}+\frac{569}{2048}a+\frac{363}{1024}$, $\frac{1}{4456448}a^{20}+\frac{1}{2228224}a^{19}-\frac{5}{1114112}a^{18}-\frac{327}{557056}a^{17}+\frac{12311}{4456448}a^{16}+\frac{2657}{131072}a^{15}-\frac{7221}{4456448}a^{14}-\frac{206517}{1114112}a^{13}+\frac{1002539}{4456448}a^{12}-\frac{545277}{2228224}a^{11}+\frac{65401}{557056}a^{10}-\frac{228295}{557056}a^{9}-\frac{549801}{1114112}a^{8}+\frac{29965}{557056}a^{7}-\frac{766619}{4456448}a^{6}-\frac{412093}{1114112}a^{5}+\frac{293047}{1114112}a^{4}+\frac{45701}{139264}a^{3}+\frac{2707}{16384}a^{2}-\frac{1109}{4096}a+\frac{321}{4096}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
| Narrow class group: | $C_{2}\times C_{2}\times C_{2}\times C_{2}$, which has order $16$ (assuming GRH) |
|
Unit group
| Rank: | $16$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{5907613635}{4456448}a^{20}-\frac{2090116773}{2228224}a^{19}-\frac{34706659663}{1114112}a^{18}+\frac{27315171}{32768}a^{17}+\frac{794940281733}{4456448}a^{16}+\frac{250417803451}{2228224}a^{15}+\frac{2711440612449}{4456448}a^{14}+\frac{876147265989}{1114112}a^{13}-\frac{29968849674015}{4456448}a^{12}-\frac{30466926492111}{2228224}a^{11}+\frac{47375989083}{557056}a^{10}+\frac{12108030392347}{557056}a^{9}+\frac{56134630744677}{1114112}a^{8}+\frac{55316960726511}{557056}a^{7}+\frac{310777030162927}{4456448}a^{6}-\frac{131276897235963}{1114112}a^{5}-\frac{19428342453075}{65536}a^{4}-\frac{38982897618853}{139264}a^{3}-\frac{2297562530391}{16384}a^{2}-\frac{151665330771}{4096}a-\frac{16687624389}{4096}$, $\frac{1788013359}{2228224}a^{20}-\frac{666505935}{1114112}a^{19}-\frac{10479889623}{557056}a^{18}+\frac{19453041}{16384}a^{17}+\frac{239432206329}{2228224}a^{16}+\frac{71658937005}{1114112}a^{15}+\frac{821011878981}{2228224}a^{14}+\frac{16083303765}{34816}a^{13}-\frac{9087514065235}{2228224}a^{12}-\frac{9042858178965}{1114112}a^{11}+\frac{68839826337}{278528}a^{10}+\frac{3623764076015}{278528}a^{9}+\frac{16772172204321}{557056}a^{8}+\frac{16500690643449}{278528}a^{7}+\frac{90409860100747}{2228224}a^{6}-\frac{19974798705447}{278528}a^{5}-\frac{5782087696689}{32768}a^{4}-\frac{2869710950931}{17408}a^{3}-\frac{670574591703}{8192}a^{2}-\frac{21951238545}{1024}a-\frac{4792429667}{2048}$, $\frac{815896071}{2228224}a^{20}-\frac{316392885}{1114112}a^{19}-\frac{4774201803}{557056}a^{18}+\frac{12975363}{16384}a^{17}+\frac{108915111969}{2228224}a^{16}+\frac{31150438067}{1114112}a^{15}+\frac{374368510413}{2228224}a^{14}+\frac{114650088099}{557056}a^{13}-\frac{4154799602947}{2228224}a^{12}-\frac{4061888302959}{1114112}a^{11}+\frac{53592514443}{278528}a^{10}+\frac{1640459987311}{278528}a^{9}+\frac{7568216663409}{557056}a^{8}+\frac{7437880048071}{278528}a^{7}+\frac{39847526287555}{2228224}a^{6}-\frac{18346567307841}{557056}a^{5}-\frac{2602410309459}{32768}a^{4}-\frac{5111359098939}{69632}a^{3}-\frac{295653796227}{8192}a^{2}-\frac{19158686433}{2048}a-\frac{2068407213}{2048}$, $\frac{2967423741}{2228224}a^{20}-\frac{1051495479}{1114112}a^{19}-\frac{17431998513}{557056}a^{18}+\frac{14243769}{16384}a^{17}+\frac{399233903931}{2228224}a^{16}+\frac{125600078721}{1114112}a^{15}+\frac{1362043757439}{2228224}a^{14}+\frac{439704568497}{557056}a^{13}-\frac{15053973155825}{2228224}a^{12}-\frac{15295249416213}{1114112}a^{11}+\frac{26001018477}{278528}a^{10}+\frac{6079830166861}{278528}a^{9}+\frac{28187338420107}{557056}a^{8}+\frac{27774982805085}{278528}a^{7}+\frac{155944545712209}{2228224}a^{6}-\frac{65946113303499}{557056}a^{5}-\frac{9754434592521}{32768}a^{4}-\frac{19567650078737}{69632}a^{3}-\frac{1153067378049}{8192}a^{2}-\frac{76104013563}{2048}a-\frac{8372531527}{2048}$, $\frac{815896071}{2228224}a^{20}-\frac{316392885}{1114112}a^{19}-\frac{4774201803}{557056}a^{18}+\frac{12975363}{16384}a^{17}+\frac{108915111969}{2228224}a^{16}+\frac{31150438067}{1114112}a^{15}+\frac{374368510413}{2228224}a^{14}+\frac{114650088099}{557056}a^{13}-\frac{4154799602947}{2228224}a^{12}-\frac{4061888302959}{1114112}a^{11}+\frac{53592514443}{278528}a^{10}+\frac{1640459987311}{278528}a^{9}+\frac{7568216663409}{557056}a^{8}+\frac{7437880048071}{278528}a^{7}+\frac{39847526287555}{2228224}a^{6}-\frac{18346567307841}{557056}a^{5}-\frac{2602410309459}{32768}a^{4}-\frac{5111359098939}{69632}a^{3}-\frac{295653796227}{8192}a^{2}-\frac{19158686433}{2048}a-\frac{2068409261}{2048}$, $\frac{129140163}{262144}a^{20}-\frac{43046721}{131072}a^{19}-\frac{760492071}{65536}a^{18}-\frac{4782969}{32768}a^{17}+\frac{17459431173}{262144}a^{16}+\frac{5802804279}{131072}a^{15}+\frac{59286672225}{262144}a^{14}+\frac{19756555371}{65536}a^{13}-\frac{653573326095}{262144}a^{12}-\frac{679924637811}{131072}a^{11}-\frac{3486504465}{32768}a^{10}+\frac{267707371275}{32768}a^{9}+\frac{1244782279989}{65536}a^{8}+\frac{1228510287675}{32768}a^{7}+\frac{7087858288623}{262144}a^{6}-\frac{2848702929345}{65536}a^{5}-\frac{7351303729623}{65536}a^{4}-\frac{878282252659}{8192}a^{3}-\frac{889130022255}{16384}a^{2}-\frac{59275334817}{4096}a-\frac{6586144217}{4096}$, $a+1$, $\frac{46916728039}{4456448}a^{20}-\frac{16281730653}{2228224}a^{19}-\frac{275848684347}{1114112}a^{18}+\frac{1894597931}{557056}a^{17}+\frac{6323116620609}{4456448}a^{16}+\frac{2028213344091}{2228224}a^{15}+\frac{21535001276525}{4456448}a^{14}+\frac{7030680587351}{1114112}a^{13}-\frac{237820132893571}{4456448}a^{12}-\frac{243632606528199}{2228224}a^{11}-\frac{165286196445}{557056}a^{10}+\frac{96524333463215}{557056}a^{9}+\frac{447925817405425}{1114112}a^{8}+\frac{441625053986383}{557056}a^{7}+\frac{25\cdots 31}{4456448}a^{6}-\frac{10\cdots 65}{1114112}a^{5}-\frac{26\cdots 31}{1114112}a^{4}-\frac{312720536456191}{139264}a^{3}-\frac{18494901183635}{16384}a^{2}-\frac{1224925329637}{4096}a-\frac{135221449797}{4096}$, $\frac{153354915413}{4456448}a^{20}-\frac{55285747707}{2228224}a^{19}-\frac{900204189049}{1114112}a^{18}+\frac{17825441165}{557056}a^{17}+\frac{20600604912547}{4456448}a^{16}+\frac{6375060748885}{2228224}a^{15}+\frac{70395357412647}{4456448}a^{14}+\frac{22505906661135}{1114112}a^{13}-\frac{778479439824441}{4456448}a^{12}-\frac{785477954433201}{2228224}a^{11}+\frac{2891157494005}{557056}a^{10}+\frac{313078433184957}{557056}a^{9}+\frac{14\cdots 87}{1114112}a^{8}+\frac{14\cdots 93}{557056}a^{7}+\frac{79\cdots 25}{4456448}a^{6}-\frac{34\cdots 37}{1114112}a^{5}-\frac{85\cdots 25}{1114112}a^{4}-\frac{10\cdots 43}{139264}a^{3}-\frac{58884243859377}{16384}a^{2}-\frac{3875778759745}{4096}a-\frac{425260682763}{4096}$, $\frac{13626143809}{2228224}a^{20}-\frac{4966113527}{1114112}a^{19}-\frac{79954354685}{557056}a^{18}+\frac{1892326121}{278528}a^{17}+\frac{1829168282839}{2228224}a^{16}+\frac{559490867369}{1114112}a^{15}+\frac{6252597718443}{2228224}a^{14}+\frac{1987740969255}{557056}a^{13}-\frac{69211436782037}{2228224}a^{12}-\frac{69509241619461}{1114112}a^{11}+\frac{361165816037}{278528}a^{10}+\frac{27764912683185}{278528}a^{9}+\frac{128496369455383}{557056}a^{8}+\frac{126524177798949}{278528}a^{7}+\frac{41207578360789}{131072}a^{6}-\frac{304011839753289}{557056}a^{5}-\frac{44387756885833}{32768}a^{4}-\frac{88464153520047}{69632}a^{3}-\frac{5182968764781}{8192}a^{2}-\frac{340127523841}{2048}a-\frac{37198258095}{2048}$, $\frac{4014028195}{557056}a^{20}-\frac{1292687511}{278528}a^{19}-\frac{23671551759}{139264}a^{18}-\frac{402205059}{69632}a^{17}+\frac{544297656805}{557056}a^{16}+\frac{185853649277}{278528}a^{15}+\frac{1842059989041}{557056}a^{14}+\frac{312308331445}{69632}a^{13}-\frac{20293282158423}{557056}a^{12}-\frac{21372193169501}{278528}a^{11}-\frac{179622169241}{69632}a^{10}+\frac{8376654600655}{69632}a^{9}+\frac{38978027812525}{139264}a^{8}+\frac{38505909809545}{69632}a^{7}+\frac{225133154060047}{557056}a^{6}-\frac{11034903265877}{17408}a^{5}-\frac{230721104340629}{139264}a^{4}-\frac{6929993164385}{4352}a^{3}-\frac{1658012939699}{2048}a^{2}-\frac{13870480287}{64}a-\frac{12372919927}{512}$, $\frac{1618592681}{4456448}a^{20}-\frac{589859023}{2228224}a^{19}-\frac{558567597}{65536}a^{18}+\frac{222580041}{557056}a^{17}+\frac{217127776047}{4456448}a^{16}+\frac{66580349393}{2228224}a^{15}+\frac{743448008707}{4456448}a^{14}+\frac{235992531439}{1114112}a^{13}-\frac{8217551544189}{4456448}a^{12}-\frac{8257334779661}{2228224}a^{11}+\frac{38103546185}{557056}a^{10}+\frac{3295505074177}{557056}a^{9}+\frac{15276035864335}{1114112}a^{8}+\frac{15037118365037}{557056}a^{7}+\frac{83386002343597}{4456448}a^{6}-\frac{2120143694945}{65536}a^{5}-\frac{89660621925785}{1114112}a^{4}-\frac{10528994928719}{139264}a^{3}-\frac{618126902085}{16384}a^{2}-\frac{40667429753}{4096}a-\frac{4461812319}{4096}$, $\frac{81800334245}{4456448}a^{20}-\frac{28300439771}{2228224}a^{19}-\frac{481011162185}{1114112}a^{18}+\frac{2814763021}{557056}a^{17}+\frac{11027487529939}{4456448}a^{16}+\frac{3546849013333}{2228224}a^{15}+\frac{37545826994455}{4456448}a^{14}+\frac{12278307469495}{1114112}a^{13}-\frac{414600771696393}{4456448}a^{12}-\frac{425236844540561}{2228224}a^{11}-\frac{428193834875}{557056}a^{10}+\frac{168397062124845}{557056}a^{9}+\frac{781527481619923}{1114112}a^{8}+\frac{770604217231457}{557056}a^{7}+\frac{43\cdots 77}{4456448}a^{6}-\frac{18\cdots 09}{1114112}a^{5}-\frac{270886731944973}{65536}a^{4}-\frac{546057027582631}{139264}a^{3}-\frac{32310118280417}{16384}a^{2}-\frac{2140842461321}{4096}a-\frac{236428732715}{4096}$, $\frac{93137757103}{4456448}a^{20}-\frac{33984886633}{2228224}a^{19}-\frac{546425626443}{1114112}a^{18}+\frac{13109219247}{557056}a^{17}+\frac{12497031816121}{4456448}a^{16}+\frac{3822342368791}{2228224}a^{15}+\frac{2515285767989}{262144}a^{14}+\frac{13573911307553}{1114112}a^{13}-\frac{27823158273163}{262144}a^{12}-\frac{474902469863003}{2228224}a^{11}+\frac{2399318074679}{557056}a^{10}+\frac{189643791901927}{557056}a^{9}+\frac{878392464344025}{1114112}a^{8}+\frac{864760670136667}{557056}a^{7}+\frac{47\cdots 95}{4456448}a^{6}-\frac{20\cdots 07}{1114112}a^{5}-\frac{51\cdots 59}{1114112}a^{4}-\frac{604883238329761}{139264}a^{3}-\frac{35470333425651}{16384}a^{2}-\frac{2330490341959}{4096}a-\frac{255271871785}{4096}$, $\frac{27910026897}{557056}a^{20}-\frac{19519562363}{557056}a^{19}-\frac{20506144213}{17408}a^{18}+\frac{3094099045}{139264}a^{17}+\frac{3759367505943}{557056}a^{16}+\frac{2394495314567}{557056}a^{15}+\frac{753512430291}{32768}a^{14}+\frac{16662537672957}{557056}a^{13}-\frac{8324828227671}{32768}a^{12}-\frac{289086535341805}{557056}a^{11}+\frac{65519806995}{139264}a^{10}+\frac{57338944563305}{69632}a^{9}+\frac{265957228830845}{139264}a^{8}+\frac{524336383652059}{139264}a^{7}+\frac{14\cdots 01}{557056}a^{6}-\frac{24\cdots 77}{557056}a^{5}-\frac{31\cdots 33}{278528}a^{4}-\frac{741125928043257}{69632}a^{3}-\frac{1367716082329}{256}a^{2}-\frac{2894488123097}{2048}a-\frac{159526361965}{1024}$, $\frac{179359337319}{2228224}a^{20}-\frac{64244209311}{1114112}a^{19}-\frac{1053142761367}{557056}a^{18}+\frac{18502648713}{278528}a^{17}+\frac{24107301112321}{2228224}a^{16}+\frac{7507442184877}{1114112}a^{15}+\frac{82332227555597}{2228224}a^{14}+\frac{6604465670447}{139264}a^{13}-\frac{910256263823531}{2228224}a^{12}-\frac{920862163654245}{1114112}a^{11}+\frac{2685101666013}{278528}a^{10}+\frac{366651883540079}{278528}a^{9}+\frac{16\cdots 61}{557056}a^{8}+\frac{16\cdots 93}{278528}a^{7}+\frac{93\cdots 35}{2228224}a^{6}-\frac{19\cdots 09}{278528}a^{5}-\frac{99\cdots 37}{557056}a^{4}-\frac{147025206481349}{8704}a^{3}-\frac{69188487905999}{8192}a^{2}-\frac{2279571779087}{1024}a-\frac{500800038267}{2048}$
|
| |
| Regulator: | \( 166388749255000 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{13}\cdot(2\pi)^{4}\cdot 166388749255000 \cdot 1}{2\cdot\sqrt{10423848562958827406082788615011739523268608}}\cr\approx \mathstrut & 0.328995025914177 \end{aligned}\] (assuming GRH)
Galois group
$C_3^7:C_2\wr C_7$ (as 21T123):
| A solvable group of order 1959552 |
| The 333 conjugacy class representatives for $C_3^7:C_2\wr C_7$ |
| Character table for $C_3^7:C_2\wr C_7$ |
Intermediate fields
| 7.7.594823321.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/padicField/5.14.0.1}{14} }{,}\,{\href{/padicField/5.7.0.1}{7} }$ | ${\href{/padicField/7.14.0.1}{14} }{,}\,{\href{/padicField/7.7.0.1}{7} }$ | ${\href{/padicField/11.7.0.1}{7} }^{3}$ | $21$ | R | ${\href{/padicField/19.14.0.1}{14} }{,}\,{\href{/padicField/19.7.0.1}{7} }$ | $21$ | R | ${\href{/padicField/31.14.0.1}{14} }{,}\,{\href{/padicField/31.7.0.1}{7} }$ | $21$ | ${\href{/padicField/41.3.0.1}{3} }{,}\,{\href{/padicField/41.2.0.1}{2} }^{3}{,}\,{\href{/padicField/41.1.0.1}{1} }^{12}$ | ${\href{/padicField/43.14.0.1}{14} }{,}\,{\href{/padicField/43.7.0.1}{7} }$ | ${\href{/padicField/47.7.0.1}{7} }^{3}$ | ${\href{/padicField/53.14.0.1}{14} }{,}\,{\href{/padicField/53.7.0.1}{7} }$ | ${\href{/padicField/59.2.0.1}{2} }^{6}{,}\,{\href{/padicField/59.1.0.1}{1} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.7.1.0a1.1 | $x^{7} + x + 1$ | $1$ | $7$ | $0$ | $C_7$ | $$[\ ]^{7}$$ |
| 2.7.2.14a11.1 | $x^{14} + 2 x^{12} + 2 x^{8} + 2 x^{7} + 2 x^{6} + 2 x^{5} + x^{2} + 2 x + 3$ | $2$ | $7$ | $14$ | 14T9 | $$[2, 2, 2, 2]^{7}$$ | |
|
\(3\)
| 3.7.3.21a17.1 | $x^{21} + 6 x^{16} + 3 x^{14} + 12 x^{11} + 3 x^{10} + 18 x^{9} + 3 x^{7} + 8 x^{6} + 6 x^{5} + 24 x^{4} + 3 x^{3} + 12 x^{2} + 4$ | $3$ | $7$ | $21$ | not computed | not computed |
|
\(17\)
| $\Q_{17}$ | $x + 14$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| $\Q_{17}$ | $x + 14$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{17}$ | $x + 14$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{17}$ | $x + 14$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{17}$ | $x + 14$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{17}$ | $x + 14$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{17}$ | $x + 14$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{17}$ | $x + 14$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| 17.2.1.0a1.1 | $x^{2} + 16 x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 17.2.1.0a1.1 | $x^{2} + 16 x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 17.1.3.2a1.1 | $x^{3} + 17$ | $3$ | $1$ | $2$ | $S_3$ | $$[\ ]_{3}^{2}$$ | |
| 17.3.1.0a1.1 | $x^{3} + x + 14$ | $1$ | $3$ | $0$ | $C_3$ | $$[\ ]^{3}$$ | |
| 17.3.1.0a1.1 | $x^{3} + x + 14$ | $1$ | $3$ | $0$ | $C_3$ | $$[\ ]^{3}$$ | |
|
\(29\)
| 29.1.7.6a1.1 | $x^{7} + 29$ | $7$ | $1$ | $6$ | $C_7$ | $$[\ ]_{7}$$ |
| 29.2.7.12a1.2 | $x^{14} + 168 x^{13} + 12110 x^{12} + 485856 x^{11} + 11733204 x^{10} + 171095904 x^{9} + 1407877912 x^{8} + 5266970880 x^{7} + 2815755824 x^{6} + 684383616 x^{5} + 93865632 x^{4} + 7773696 x^{3} + 387520 x^{2} + 10752 x + 157$ | $7$ | $2$ | $12$ | $C_{14}$ | $$[\ ]_{7}^{2}$$ |