Properties

Label 21.13.104...608.1
Degree $21$
Signature $[13, 4]$
Discriminant $1.042\times 10^{43}$
Root discriminant \(111.81\)
Ramified primes $2,3,17,29$
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $C_3^7:C_2\wr C_7$ (as 21T123)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / Pari/GP / SageMath

Normalized defining polynomial

Copy content comment:Define the number field
 
Copy content sage:x = polygen(QQ); K.<a> = NumberField(x^21 - 24*x^19 - 16*x^18 + 135*x^17 + 180*x^16 + 519*x^15 + 918*x^14 - 4653*x^13 - 13904*x^12 - 7236*x^11 + 16440*x^10 + 49612*x^9 + 101808*x^8 + 105621*x^7 - 51646*x^6 - 286524*x^5 - 369432*x^4 - 255248*x^3 - 102816*x^2 - 22848*x - 2176)
 
Copy content gp:K = bnfinit(y^21 - 24*y^19 - 16*y^18 + 135*y^17 + 180*y^16 + 519*y^15 + 918*y^14 - 4653*y^13 - 13904*y^12 - 7236*y^11 + 16440*y^10 + 49612*y^9 + 101808*y^8 + 105621*y^7 - 51646*y^6 - 286524*y^5 - 369432*y^4 - 255248*y^3 - 102816*y^2 - 22848*y - 2176, 1)
 
Copy content magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^21 - 24*x^19 - 16*x^18 + 135*x^17 + 180*x^16 + 519*x^15 + 918*x^14 - 4653*x^13 - 13904*x^12 - 7236*x^11 + 16440*x^10 + 49612*x^9 + 101808*x^8 + 105621*x^7 - 51646*x^6 - 286524*x^5 - 369432*x^4 - 255248*x^3 - 102816*x^2 - 22848*x - 2176);
 
Copy content oscar:Qx, x = polynomial_ring(QQ); K, a = number_field(x^21 - 24*x^19 - 16*x^18 + 135*x^17 + 180*x^16 + 519*x^15 + 918*x^14 - 4653*x^13 - 13904*x^12 - 7236*x^11 + 16440*x^10 + 49612*x^9 + 101808*x^8 + 105621*x^7 - 51646*x^6 - 286524*x^5 - 369432*x^4 - 255248*x^3 - 102816*x^2 - 22848*x - 2176)
 

\( x^{21} - 24 x^{19} - 16 x^{18} + 135 x^{17} + 180 x^{16} + 519 x^{15} + 918 x^{14} - 4653 x^{13} + \cdots - 2176 \) Copy content Toggle raw display

Copy content comment:Defining polynomial
 
Copy content sage:K.defining_polynomial()
 
Copy content gp:K.pol
 
Copy content magma:DefiningPolynomial(K);
 
Copy content oscar:defining_polynomial(K)
 

Invariants

Degree:  $21$
Copy content comment:Degree over Q
 
Copy content sage:K.degree()
 
Copy content gp:poldegree(K.pol)
 
Copy content magma:Degree(K);
 
Copy content oscar:degree(K)
 
Signature:  $[13, 4]$
Copy content comment:Signature
 
Copy content sage:K.signature()
 
Copy content gp:K.sign
 
Copy content magma:Signature(K);
 
Copy content oscar:signature(K)
 
Discriminant:   \(10423848562958827406082788615011739523268608\) \(\medspace = 2^{14}\cdot 3^{21}\cdot 17^{2}\cdot 29^{18}\) Copy content Toggle raw display
Copy content comment:Discriminant
 
Copy content sage:K.disc()
 
Copy content gp:K.disc
 
Copy content magma:OK := Integers(K); Discriminant(OK);
 
Copy content oscar:OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(111.81\)
Copy content sage:(K.disc().abs())^(1./K.degree())
 
Copy content gp:abs(K.disc)^(1/poldegree(K.pol))
 
Copy content magma:Abs(Discriminant(OK))^(1/Degree(K));
 
Copy content oscar:(1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  not computed
Ramified primes:   \(2\), \(3\), \(17\), \(29\) Copy content Toggle raw display
Copy content comment:Ramified primes
 
Copy content sage:K.disc().support()
 
Copy content gp:factor(abs(K.disc))[,1]~
 
Copy content magma:PrimeDivisors(Discriminant(OK));
 
Copy content oscar:prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{3}) \)
$\Aut(K/\Q)$:   $C_1$
Copy content comment:Autmorphisms
 
Copy content sage:K.automorphisms()
 
Copy content magma:Automorphisms(K);
 
Copy content oscar:automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.
This field has no CM subfields.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{8}a^{15}-\frac{1}{2}a^{14}-\frac{1}{2}a^{13}-\frac{1}{8}a^{11}+\frac{3}{8}a^{9}+\frac{1}{4}a^{8}-\frac{1}{8}a^{7}-\frac{1}{2}a^{6}-\frac{1}{2}a^{3}-\frac{3}{8}a-\frac{1}{4}$, $\frac{1}{64}a^{16}+\frac{1}{32}a^{15}+\frac{1}{16}a^{14}-\frac{1}{8}a^{13}-\frac{25}{64}a^{12}+\frac{1}{32}a^{11}-\frac{13}{64}a^{10}+\frac{7}{16}a^{9}+\frac{3}{64}a^{8}+\frac{3}{32}a^{7}-\frac{1}{2}a^{6}+\frac{3}{8}a^{5}-\frac{5}{16}a^{4}+\frac{1}{8}a^{3}+\frac{5}{64}a^{2}+\frac{3}{16}a+\frac{5}{16}$, $\frac{1}{512}a^{17}-\frac{5}{32}a^{14}+\frac{183}{512}a^{13}-\frac{51}{128}a^{12}-\frac{209}{512}a^{11}-\frac{37}{256}a^{10}-\frac{117}{512}a^{9}+\frac{3}{8}a^{8}+\frac{5}{128}a^{7}-\frac{13}{64}a^{6}-\frac{17}{128}a^{5}+\frac{15}{32}a^{4}-\frac{11}{512}a^{3}+\frac{33}{256}a^{2}+\frac{63}{128}a+\frac{27}{64}$, $\frac{1}{69632}a^{18}-\frac{1}{2048}a^{17}+\frac{3}{1088}a^{16}-\frac{77}{4352}a^{15}+\frac{1623}{69632}a^{14}+\frac{12659}{34816}a^{13}+\frac{15239}{69632}a^{12}-\frac{2849}{8704}a^{11}+\frac{14239}{69632}a^{10}-\frac{13915}{34816}a^{9}-\frac{5067}{17408}a^{8}-\frac{1769}{4352}a^{7}-\frac{6685}{17408}a^{6}+\frac{1087}{8704}a^{5}+\frac{8469}{69632}a^{4}+\frac{567}{8704}a^{3}+\frac{207}{512}a^{2}-\frac{45}{128}a+\frac{85}{256}$, $\frac{1}{557056}a^{19}-\frac{1}{139264}a^{18}+\frac{65}{139264}a^{17}-\frac{261}{34816}a^{16}+\frac{16887}{557056}a^{15}+\frac{11427}{69632}a^{14}-\frac{965}{557056}a^{13}+\frac{6117}{278528}a^{12}-\frac{218001}{557056}a^{11}+\frac{55771}{139264}a^{10}-\frac{231}{512}a^{9}+\frac{1273}{4096}a^{8}+\frac{69355}{139264}a^{7}-\frac{45}{17408}a^{6}-\frac{152795}{557056}a^{5}-\frac{105705}{278528}a^{4}-\frac{33191}{69632}a^{3}+\frac{815}{2048}a^{2}+\frac{569}{2048}a+\frac{363}{1024}$, $\frac{1}{4456448}a^{20}+\frac{1}{2228224}a^{19}-\frac{5}{1114112}a^{18}-\frac{327}{557056}a^{17}+\frac{12311}{4456448}a^{16}+\frac{2657}{131072}a^{15}-\frac{7221}{4456448}a^{14}-\frac{206517}{1114112}a^{13}+\frac{1002539}{4456448}a^{12}-\frac{545277}{2228224}a^{11}+\frac{65401}{557056}a^{10}-\frac{228295}{557056}a^{9}-\frac{549801}{1114112}a^{8}+\frac{29965}{557056}a^{7}-\frac{766619}{4456448}a^{6}-\frac{412093}{1114112}a^{5}+\frac{293047}{1114112}a^{4}+\frac{45701}{139264}a^{3}+\frac{2707}{16384}a^{2}-\frac{1109}{4096}a+\frac{321}{4096}$ Copy content Toggle raw display

Copy content comment:Integral basis
 
Copy content sage:K.integral_basis()
 
Copy content gp:K.zk
 
Copy content magma:IntegralBasis(K);
 
Copy content oscar:basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

Ideal class group:  Trivial group, which has order $1$ (assuming GRH)
Copy content comment:Class group
 
Copy content sage:K.class_group().invariants()
 
Copy content gp:K.clgp
 
Copy content magma:ClassGroup(K);
 
Copy content oscar:class_group(K)
 
Narrow class group:  $C_{2}\times C_{2}\times C_{2}\times C_{2}$, which has order $16$ (assuming GRH)
Copy content comment:Narrow class group
 
Copy content sage:K.narrow_class_group().invariants()
 
Copy content gp:bnfnarrow(K)
 
Copy content magma:NarrowClassGroup(K);
 

Unit group

Copy content comment:Unit group
 
Copy content sage:UK = K.unit_group()
 
Copy content magma:UK, fUK := UnitGroup(K);
 
Copy content oscar:UK, fUK = unit_group(OK)
 
Rank:  $16$
Copy content comment:Unit rank
 
Copy content sage:UK.rank()
 
Copy content gp:K.fu
 
Copy content magma:UnitRank(K);
 
Copy content oscar:rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
Copy content comment:Generator for roots of unity
 
Copy content sage:UK.torsion_generator()
 
Copy content gp:K.tu[2]
 
Copy content magma:K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
Copy content oscar:torsion_units_generator(OK)
 
Fundamental units:   $\frac{5907613635}{4456448}a^{20}-\frac{2090116773}{2228224}a^{19}-\frac{34706659663}{1114112}a^{18}+\frac{27315171}{32768}a^{17}+\frac{794940281733}{4456448}a^{16}+\frac{250417803451}{2228224}a^{15}+\frac{2711440612449}{4456448}a^{14}+\frac{876147265989}{1114112}a^{13}-\frac{29968849674015}{4456448}a^{12}-\frac{30466926492111}{2228224}a^{11}+\frac{47375989083}{557056}a^{10}+\frac{12108030392347}{557056}a^{9}+\frac{56134630744677}{1114112}a^{8}+\frac{55316960726511}{557056}a^{7}+\frac{310777030162927}{4456448}a^{6}-\frac{131276897235963}{1114112}a^{5}-\frac{19428342453075}{65536}a^{4}-\frac{38982897618853}{139264}a^{3}-\frac{2297562530391}{16384}a^{2}-\frac{151665330771}{4096}a-\frac{16687624389}{4096}$, $\frac{1788013359}{2228224}a^{20}-\frac{666505935}{1114112}a^{19}-\frac{10479889623}{557056}a^{18}+\frac{19453041}{16384}a^{17}+\frac{239432206329}{2228224}a^{16}+\frac{71658937005}{1114112}a^{15}+\frac{821011878981}{2228224}a^{14}+\frac{16083303765}{34816}a^{13}-\frac{9087514065235}{2228224}a^{12}-\frac{9042858178965}{1114112}a^{11}+\frac{68839826337}{278528}a^{10}+\frac{3623764076015}{278528}a^{9}+\frac{16772172204321}{557056}a^{8}+\frac{16500690643449}{278528}a^{7}+\frac{90409860100747}{2228224}a^{6}-\frac{19974798705447}{278528}a^{5}-\frac{5782087696689}{32768}a^{4}-\frac{2869710950931}{17408}a^{3}-\frac{670574591703}{8192}a^{2}-\frac{21951238545}{1024}a-\frac{4792429667}{2048}$, $\frac{815896071}{2228224}a^{20}-\frac{316392885}{1114112}a^{19}-\frac{4774201803}{557056}a^{18}+\frac{12975363}{16384}a^{17}+\frac{108915111969}{2228224}a^{16}+\frac{31150438067}{1114112}a^{15}+\frac{374368510413}{2228224}a^{14}+\frac{114650088099}{557056}a^{13}-\frac{4154799602947}{2228224}a^{12}-\frac{4061888302959}{1114112}a^{11}+\frac{53592514443}{278528}a^{10}+\frac{1640459987311}{278528}a^{9}+\frac{7568216663409}{557056}a^{8}+\frac{7437880048071}{278528}a^{7}+\frac{39847526287555}{2228224}a^{6}-\frac{18346567307841}{557056}a^{5}-\frac{2602410309459}{32768}a^{4}-\frac{5111359098939}{69632}a^{3}-\frac{295653796227}{8192}a^{2}-\frac{19158686433}{2048}a-\frac{2068407213}{2048}$, $\frac{2967423741}{2228224}a^{20}-\frac{1051495479}{1114112}a^{19}-\frac{17431998513}{557056}a^{18}+\frac{14243769}{16384}a^{17}+\frac{399233903931}{2228224}a^{16}+\frac{125600078721}{1114112}a^{15}+\frac{1362043757439}{2228224}a^{14}+\frac{439704568497}{557056}a^{13}-\frac{15053973155825}{2228224}a^{12}-\frac{15295249416213}{1114112}a^{11}+\frac{26001018477}{278528}a^{10}+\frac{6079830166861}{278528}a^{9}+\frac{28187338420107}{557056}a^{8}+\frac{27774982805085}{278528}a^{7}+\frac{155944545712209}{2228224}a^{6}-\frac{65946113303499}{557056}a^{5}-\frac{9754434592521}{32768}a^{4}-\frac{19567650078737}{69632}a^{3}-\frac{1153067378049}{8192}a^{2}-\frac{76104013563}{2048}a-\frac{8372531527}{2048}$, $\frac{815896071}{2228224}a^{20}-\frac{316392885}{1114112}a^{19}-\frac{4774201803}{557056}a^{18}+\frac{12975363}{16384}a^{17}+\frac{108915111969}{2228224}a^{16}+\frac{31150438067}{1114112}a^{15}+\frac{374368510413}{2228224}a^{14}+\frac{114650088099}{557056}a^{13}-\frac{4154799602947}{2228224}a^{12}-\frac{4061888302959}{1114112}a^{11}+\frac{53592514443}{278528}a^{10}+\frac{1640459987311}{278528}a^{9}+\frac{7568216663409}{557056}a^{8}+\frac{7437880048071}{278528}a^{7}+\frac{39847526287555}{2228224}a^{6}-\frac{18346567307841}{557056}a^{5}-\frac{2602410309459}{32768}a^{4}-\frac{5111359098939}{69632}a^{3}-\frac{295653796227}{8192}a^{2}-\frac{19158686433}{2048}a-\frac{2068409261}{2048}$, $\frac{129140163}{262144}a^{20}-\frac{43046721}{131072}a^{19}-\frac{760492071}{65536}a^{18}-\frac{4782969}{32768}a^{17}+\frac{17459431173}{262144}a^{16}+\frac{5802804279}{131072}a^{15}+\frac{59286672225}{262144}a^{14}+\frac{19756555371}{65536}a^{13}-\frac{653573326095}{262144}a^{12}-\frac{679924637811}{131072}a^{11}-\frac{3486504465}{32768}a^{10}+\frac{267707371275}{32768}a^{9}+\frac{1244782279989}{65536}a^{8}+\frac{1228510287675}{32768}a^{7}+\frac{7087858288623}{262144}a^{6}-\frac{2848702929345}{65536}a^{5}-\frac{7351303729623}{65536}a^{4}-\frac{878282252659}{8192}a^{3}-\frac{889130022255}{16384}a^{2}-\frac{59275334817}{4096}a-\frac{6586144217}{4096}$, $a+1$, $\frac{46916728039}{4456448}a^{20}-\frac{16281730653}{2228224}a^{19}-\frac{275848684347}{1114112}a^{18}+\frac{1894597931}{557056}a^{17}+\frac{6323116620609}{4456448}a^{16}+\frac{2028213344091}{2228224}a^{15}+\frac{21535001276525}{4456448}a^{14}+\frac{7030680587351}{1114112}a^{13}-\frac{237820132893571}{4456448}a^{12}-\frac{243632606528199}{2228224}a^{11}-\frac{165286196445}{557056}a^{10}+\frac{96524333463215}{557056}a^{9}+\frac{447925817405425}{1114112}a^{8}+\frac{441625053986383}{557056}a^{7}+\frac{25\cdots 31}{4456448}a^{6}-\frac{10\cdots 65}{1114112}a^{5}-\frac{26\cdots 31}{1114112}a^{4}-\frac{312720536456191}{139264}a^{3}-\frac{18494901183635}{16384}a^{2}-\frac{1224925329637}{4096}a-\frac{135221449797}{4096}$, $\frac{153354915413}{4456448}a^{20}-\frac{55285747707}{2228224}a^{19}-\frac{900204189049}{1114112}a^{18}+\frac{17825441165}{557056}a^{17}+\frac{20600604912547}{4456448}a^{16}+\frac{6375060748885}{2228224}a^{15}+\frac{70395357412647}{4456448}a^{14}+\frac{22505906661135}{1114112}a^{13}-\frac{778479439824441}{4456448}a^{12}-\frac{785477954433201}{2228224}a^{11}+\frac{2891157494005}{557056}a^{10}+\frac{313078433184957}{557056}a^{9}+\frac{14\cdots 87}{1114112}a^{8}+\frac{14\cdots 93}{557056}a^{7}+\frac{79\cdots 25}{4456448}a^{6}-\frac{34\cdots 37}{1114112}a^{5}-\frac{85\cdots 25}{1114112}a^{4}-\frac{10\cdots 43}{139264}a^{3}-\frac{58884243859377}{16384}a^{2}-\frac{3875778759745}{4096}a-\frac{425260682763}{4096}$, $\frac{13626143809}{2228224}a^{20}-\frac{4966113527}{1114112}a^{19}-\frac{79954354685}{557056}a^{18}+\frac{1892326121}{278528}a^{17}+\frac{1829168282839}{2228224}a^{16}+\frac{559490867369}{1114112}a^{15}+\frac{6252597718443}{2228224}a^{14}+\frac{1987740969255}{557056}a^{13}-\frac{69211436782037}{2228224}a^{12}-\frac{69509241619461}{1114112}a^{11}+\frac{361165816037}{278528}a^{10}+\frac{27764912683185}{278528}a^{9}+\frac{128496369455383}{557056}a^{8}+\frac{126524177798949}{278528}a^{7}+\frac{41207578360789}{131072}a^{6}-\frac{304011839753289}{557056}a^{5}-\frac{44387756885833}{32768}a^{4}-\frac{88464153520047}{69632}a^{3}-\frac{5182968764781}{8192}a^{2}-\frac{340127523841}{2048}a-\frac{37198258095}{2048}$, $\frac{4014028195}{557056}a^{20}-\frac{1292687511}{278528}a^{19}-\frac{23671551759}{139264}a^{18}-\frac{402205059}{69632}a^{17}+\frac{544297656805}{557056}a^{16}+\frac{185853649277}{278528}a^{15}+\frac{1842059989041}{557056}a^{14}+\frac{312308331445}{69632}a^{13}-\frac{20293282158423}{557056}a^{12}-\frac{21372193169501}{278528}a^{11}-\frac{179622169241}{69632}a^{10}+\frac{8376654600655}{69632}a^{9}+\frac{38978027812525}{139264}a^{8}+\frac{38505909809545}{69632}a^{7}+\frac{225133154060047}{557056}a^{6}-\frac{11034903265877}{17408}a^{5}-\frac{230721104340629}{139264}a^{4}-\frac{6929993164385}{4352}a^{3}-\frac{1658012939699}{2048}a^{2}-\frac{13870480287}{64}a-\frac{12372919927}{512}$, $\frac{1618592681}{4456448}a^{20}-\frac{589859023}{2228224}a^{19}-\frac{558567597}{65536}a^{18}+\frac{222580041}{557056}a^{17}+\frac{217127776047}{4456448}a^{16}+\frac{66580349393}{2228224}a^{15}+\frac{743448008707}{4456448}a^{14}+\frac{235992531439}{1114112}a^{13}-\frac{8217551544189}{4456448}a^{12}-\frac{8257334779661}{2228224}a^{11}+\frac{38103546185}{557056}a^{10}+\frac{3295505074177}{557056}a^{9}+\frac{15276035864335}{1114112}a^{8}+\frac{15037118365037}{557056}a^{7}+\frac{83386002343597}{4456448}a^{6}-\frac{2120143694945}{65536}a^{5}-\frac{89660621925785}{1114112}a^{4}-\frac{10528994928719}{139264}a^{3}-\frac{618126902085}{16384}a^{2}-\frac{40667429753}{4096}a-\frac{4461812319}{4096}$, $\frac{81800334245}{4456448}a^{20}-\frac{28300439771}{2228224}a^{19}-\frac{481011162185}{1114112}a^{18}+\frac{2814763021}{557056}a^{17}+\frac{11027487529939}{4456448}a^{16}+\frac{3546849013333}{2228224}a^{15}+\frac{37545826994455}{4456448}a^{14}+\frac{12278307469495}{1114112}a^{13}-\frac{414600771696393}{4456448}a^{12}-\frac{425236844540561}{2228224}a^{11}-\frac{428193834875}{557056}a^{10}+\frac{168397062124845}{557056}a^{9}+\frac{781527481619923}{1114112}a^{8}+\frac{770604217231457}{557056}a^{7}+\frac{43\cdots 77}{4456448}a^{6}-\frac{18\cdots 09}{1114112}a^{5}-\frac{270886731944973}{65536}a^{4}-\frac{546057027582631}{139264}a^{3}-\frac{32310118280417}{16384}a^{2}-\frac{2140842461321}{4096}a-\frac{236428732715}{4096}$, $\frac{93137757103}{4456448}a^{20}-\frac{33984886633}{2228224}a^{19}-\frac{546425626443}{1114112}a^{18}+\frac{13109219247}{557056}a^{17}+\frac{12497031816121}{4456448}a^{16}+\frac{3822342368791}{2228224}a^{15}+\frac{2515285767989}{262144}a^{14}+\frac{13573911307553}{1114112}a^{13}-\frac{27823158273163}{262144}a^{12}-\frac{474902469863003}{2228224}a^{11}+\frac{2399318074679}{557056}a^{10}+\frac{189643791901927}{557056}a^{9}+\frac{878392464344025}{1114112}a^{8}+\frac{864760670136667}{557056}a^{7}+\frac{47\cdots 95}{4456448}a^{6}-\frac{20\cdots 07}{1114112}a^{5}-\frac{51\cdots 59}{1114112}a^{4}-\frac{604883238329761}{139264}a^{3}-\frac{35470333425651}{16384}a^{2}-\frac{2330490341959}{4096}a-\frac{255271871785}{4096}$, $\frac{27910026897}{557056}a^{20}-\frac{19519562363}{557056}a^{19}-\frac{20506144213}{17408}a^{18}+\frac{3094099045}{139264}a^{17}+\frac{3759367505943}{557056}a^{16}+\frac{2394495314567}{557056}a^{15}+\frac{753512430291}{32768}a^{14}+\frac{16662537672957}{557056}a^{13}-\frac{8324828227671}{32768}a^{12}-\frac{289086535341805}{557056}a^{11}+\frac{65519806995}{139264}a^{10}+\frac{57338944563305}{69632}a^{9}+\frac{265957228830845}{139264}a^{8}+\frac{524336383652059}{139264}a^{7}+\frac{14\cdots 01}{557056}a^{6}-\frac{24\cdots 77}{557056}a^{5}-\frac{31\cdots 33}{278528}a^{4}-\frac{741125928043257}{69632}a^{3}-\frac{1367716082329}{256}a^{2}-\frac{2894488123097}{2048}a-\frac{159526361965}{1024}$, $\frac{179359337319}{2228224}a^{20}-\frac{64244209311}{1114112}a^{19}-\frac{1053142761367}{557056}a^{18}+\frac{18502648713}{278528}a^{17}+\frac{24107301112321}{2228224}a^{16}+\frac{7507442184877}{1114112}a^{15}+\frac{82332227555597}{2228224}a^{14}+\frac{6604465670447}{139264}a^{13}-\frac{910256263823531}{2228224}a^{12}-\frac{920862163654245}{1114112}a^{11}+\frac{2685101666013}{278528}a^{10}+\frac{366651883540079}{278528}a^{9}+\frac{16\cdots 61}{557056}a^{8}+\frac{16\cdots 93}{278528}a^{7}+\frac{93\cdots 35}{2228224}a^{6}-\frac{19\cdots 09}{278528}a^{5}-\frac{99\cdots 37}{557056}a^{4}-\frac{147025206481349}{8704}a^{3}-\frac{69188487905999}{8192}a^{2}-\frac{2279571779087}{1024}a-\frac{500800038267}{2048}$ Copy content Toggle raw display (assuming GRH)
Copy content comment:Fundamental units
 
Copy content sage:UK.fundamental_units()
 
Copy content gp:K.fu
 
Copy content magma:[K|fUK(g): g in Generators(UK)];
 
Copy content oscar:[K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 166388749255000 \) (assuming GRH)
Copy content comment:Regulator
 
Copy content sage:K.regulator()
 
Copy content gp:K.reg
 
Copy content magma:Regulator(K);
 
Copy content oscar:regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{13}\cdot(2\pi)^{4}\cdot 166388749255000 \cdot 1}{2\cdot\sqrt{10423848562958827406082788615011739523268608}}\cr\approx \mathstrut & 0.328995025914177 \end{aligned}\] (assuming GRH)

Copy content comment:Analytic class number formula
 
Copy content sage:# self-contained SageMath code snippet to compute the analytic class number formula x = polygen(QQ); K.<a> = NumberField(x^21 - 24*x^19 - 16*x^18 + 135*x^17 + 180*x^16 + 519*x^15 + 918*x^14 - 4653*x^13 - 13904*x^12 - 7236*x^11 + 16440*x^10 + 49612*x^9 + 101808*x^8 + 105621*x^7 - 51646*x^6 - 286524*x^5 - 369432*x^4 - 255248*x^3 - 102816*x^2 - 22848*x - 2176) DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent() hK = K.class_number(); wK = K.unit_group().torsion_generator().order(); 2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
Copy content gp:\\ self-contained Pari/GP code snippet to compute the analytic class number formula K = bnfinit(x^21 - 24*x^19 - 16*x^18 + 135*x^17 + 180*x^16 + 519*x^15 + 918*x^14 - 4653*x^13 - 13904*x^12 - 7236*x^11 + 16440*x^10 + 49612*x^9 + 101808*x^8 + 105621*x^7 - 51646*x^6 - 286524*x^5 - 369432*x^4 - 255248*x^3 - 102816*x^2 - 22848*x - 2176, 1); [polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
Copy content magma:/* self-contained Magma code snippet to compute the analytic class number formula */ Qx<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^21 - 24*x^19 - 16*x^18 + 135*x^17 + 180*x^16 + 519*x^15 + 918*x^14 - 4653*x^13 - 13904*x^12 - 7236*x^11 + 16440*x^10 + 49612*x^9 + 101808*x^8 + 105621*x^7 - 51646*x^6 - 286524*x^5 - 369432*x^4 - 255248*x^3 - 102816*x^2 - 22848*x - 2176); OK := Integers(K); DK := Discriminant(OK); UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK); r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK); hK := #clK; wK := #TorsionSubgroup(UK); 2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
Copy content oscar:# self-contained Oscar code snippet to compute the analytic class number formula Qx, x = PolynomialRing(QQ); K, a = NumberField(x^21 - 24*x^19 - 16*x^18 + 135*x^17 + 180*x^16 + 519*x^15 + 918*x^14 - 4653*x^13 - 13904*x^12 - 7236*x^11 + 16440*x^10 + 49612*x^9 + 101808*x^8 + 105621*x^7 - 51646*x^6 - 286524*x^5 - 369432*x^4 - 255248*x^3 - 102816*x^2 - 22848*x - 2176); OK = ring_of_integers(K); DK = discriminant(OK); UK, fUK = unit_group(OK); clK, fclK = class_group(OK); r1,r2 = signature(K); RK = regulator(K); RR = parent(RK); hK = order(clK); wK = torsion_units_order(K); 2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_3^7:C_2\wr C_7$ (as 21T123):

Copy content comment:Galois group
 
Copy content sage:K.galois_group(type='pari')
 
Copy content gp:polgalois(K.pol)
 
Copy content magma:G = GaloisGroup(K);
 
Copy content oscar:G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 1959552
The 333 conjugacy class representatives for $C_3^7:C_2\wr C_7$
Character table for $C_3^7:C_2\wr C_7$

Intermediate fields

7.7.594823321.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Copy content comment:Intermediate fields
 
Copy content sage:K.subfields()[1:-1]
 
Copy content gp:L = nfsubfields(K); L[2..length(b)]
 
Copy content magma:L := Subfields(K); L[2..#L];
 
Copy content oscar:subfields(K)[2:end-1]
 

Sibling fields

Degree 42 siblings: data not computed
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R R ${\href{/padicField/5.14.0.1}{14} }{,}\,{\href{/padicField/5.7.0.1}{7} }$ ${\href{/padicField/7.14.0.1}{14} }{,}\,{\href{/padicField/7.7.0.1}{7} }$ ${\href{/padicField/11.7.0.1}{7} }^{3}$ $21$ R ${\href{/padicField/19.14.0.1}{14} }{,}\,{\href{/padicField/19.7.0.1}{7} }$ $21$ R ${\href{/padicField/31.14.0.1}{14} }{,}\,{\href{/padicField/31.7.0.1}{7} }$ $21$ ${\href{/padicField/41.3.0.1}{3} }{,}\,{\href{/padicField/41.2.0.1}{2} }^{3}{,}\,{\href{/padicField/41.1.0.1}{1} }^{12}$ ${\href{/padicField/43.14.0.1}{14} }{,}\,{\href{/padicField/43.7.0.1}{7} }$ ${\href{/padicField/47.7.0.1}{7} }^{3}$ ${\href{/padicField/53.14.0.1}{14} }{,}\,{\href{/padicField/53.7.0.1}{7} }$ ${\href{/padicField/59.2.0.1}{2} }^{6}{,}\,{\href{/padicField/59.1.0.1}{1} }^{9}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

Copy content comment:Frobenius cycle types
 
Copy content sage:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Sage: p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
Copy content gp:\\ to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Pari: p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
Copy content magma:// to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Magma: p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
Copy content oscar:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Oscar: p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.7.1.0a1.1$x^{7} + x + 1$$1$$7$$0$$C_7$$$[\ ]^{7}$$
2.7.2.14a11.1$x^{14} + 2 x^{12} + 2 x^{8} + 2 x^{7} + 2 x^{6} + 2 x^{5} + x^{2} + 2 x + 3$$2$$7$$14$14T9$$[2, 2, 2, 2]^{7}$$
\(3\) Copy content Toggle raw display 3.7.3.21a17.1$x^{21} + 6 x^{16} + 3 x^{14} + 12 x^{11} + 3 x^{10} + 18 x^{9} + 3 x^{7} + 8 x^{6} + 6 x^{5} + 24 x^{4} + 3 x^{3} + 12 x^{2} + 4$$3$$7$$21$not computednot computed
\(17\) Copy content Toggle raw display $\Q_{17}$$x + 14$$1$$1$$0$Trivial$$[\ ]$$
$\Q_{17}$$x + 14$$1$$1$$0$Trivial$$[\ ]$$
$\Q_{17}$$x + 14$$1$$1$$0$Trivial$$[\ ]$$
$\Q_{17}$$x + 14$$1$$1$$0$Trivial$$[\ ]$$
$\Q_{17}$$x + 14$$1$$1$$0$Trivial$$[\ ]$$
$\Q_{17}$$x + 14$$1$$1$$0$Trivial$$[\ ]$$
$\Q_{17}$$x + 14$$1$$1$$0$Trivial$$[\ ]$$
$\Q_{17}$$x + 14$$1$$1$$0$Trivial$$[\ ]$$
17.2.1.0a1.1$x^{2} + 16 x + 3$$1$$2$$0$$C_2$$$[\ ]^{2}$$
17.2.1.0a1.1$x^{2} + 16 x + 3$$1$$2$$0$$C_2$$$[\ ]^{2}$$
17.1.3.2a1.1$x^{3} + 17$$3$$1$$2$$S_3$$$[\ ]_{3}^{2}$$
17.3.1.0a1.1$x^{3} + x + 14$$1$$3$$0$$C_3$$$[\ ]^{3}$$
17.3.1.0a1.1$x^{3} + x + 14$$1$$3$$0$$C_3$$$[\ ]^{3}$$
\(29\) Copy content Toggle raw display 29.1.7.6a1.1$x^{7} + 29$$7$$1$$6$$C_7$$$[\ ]_{7}$$
29.2.7.12a1.2$x^{14} + 168 x^{13} + 12110 x^{12} + 485856 x^{11} + 11733204 x^{10} + 171095904 x^{9} + 1407877912 x^{8} + 5266970880 x^{7} + 2815755824 x^{6} + 684383616 x^{5} + 93865632 x^{4} + 7773696 x^{3} + 387520 x^{2} + 10752 x + 157$$7$$2$$12$$C_{14}$$$[\ ]_{7}^{2}$$

Spectrum of ring of integers

(0)(0)(2)(3)(5)(7)(11)(13)(17)(19)(23)(29)(31)(37)(41)(43)(47)(53)(59)