Normalized defining polynomial
\( x^{21} - 60 x^{19} - 8 x^{18} + 1224 x^{17} + 192 x^{16} - 10767 x^{15} - 4410 x^{14} + 45264 x^{13} + 54600 x^{12} - 156366 x^{11} - 233310 x^{10} + 726860 x^{9} + 270576 x^{8} - 2019843 x^{7} - 331208 x^{6} + 2676384 x^{5} + 103680 x^{4} - 922000 x^{3} + 242208 x^{2} - 161472 x - 107648 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[13, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(101589114585925847727528969484632342528=2^{14}\cdot 3^{21}\cdot 23^{3}\cdot 29^{2}\cdot 53\cdot 239^{3}\cdot 431^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $64.54$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 23, 29, 53, 239, 431$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{9} - \frac{1}{2} a$, $\frac{1}{4} a^{16} + \frac{1}{4} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} + \frac{1}{4} a^{2}$, $\frac{1}{8} a^{17} + \frac{1}{8} a^{11} - \frac{1}{4} a^{10} - \frac{1}{2} a^{9} + \frac{1}{4} a^{7} + \frac{1}{4} a^{6} - \frac{1}{2} a^{5} - \frac{3}{8} a^{3} - \frac{1}{2} a$, $\frac{1}{16} a^{18} - \frac{1}{2} a^{14} + \frac{1}{16} a^{12} + \frac{3}{8} a^{11} - \frac{1}{4} a^{10} - \frac{1}{2} a^{9} + \frac{1}{8} a^{8} + \frac{1}{8} a^{7} + \frac{1}{4} a^{6} - \frac{1}{2} a^{5} - \frac{3}{16} a^{4} - \frac{1}{2} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{32} a^{19} - \frac{1}{4} a^{15} - \frac{15}{32} a^{13} + \frac{3}{16} a^{12} + \frac{3}{8} a^{11} - \frac{1}{4} a^{10} + \frac{1}{16} a^{9} + \frac{1}{16} a^{8} + \frac{1}{8} a^{7} - \frac{1}{4} a^{6} - \frac{3}{32} a^{5} - \frac{1}{4} a^{4} + \frac{3}{8} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{33417245026109565010621517301188279174298007427870505259016172736} a^{20} + \frac{460966111776563560056799259940602978285639190217030898089449}{36009962312618065744204221229728749110234921797274251356698462} a^{19} - \frac{7985620721432928207765811067955693489682934753753085711618826}{522144453532961953290961207831066862098406366060476644672127699} a^{18} + \frac{113919292753825722370145325216820582289537662108133476531926771}{4177155628263695626327689662648534896787250928483813157377021592} a^{17} + \frac{319318002649109916400189703072702953806109578337179054988599547}{4177155628263695626327689662648534896787250928483813157377021592} a^{16} + \frac{71237789994454086068019526685564762126565379277186576880090619}{1044288907065923906581922415662133724196812732120953289344255398} a^{15} + \frac{6292402610848173640922026510869567635249345555973368767237585361}{33417245026109565010621517301188279174298007427870505259016172736} a^{14} - \frac{6115872786177307389544039424342797862944935773678179981490084909}{16708622513054782505310758650594139587149003713935252629508086368} a^{13} - \frac{2461077610273850804048489061708972252827266011712350091956730813}{8354311256527391252655379325297069793574501856967626314754043184} a^{12} + \frac{858117173711207334116135106282612812187137352414517906356062841}{2088577814131847813163844831324267448393625464241906578688510796} a^{11} + \frac{791281947972282903204487101951752882864115488236775220404340297}{16708622513054782505310758650594139587149003713935252629508086368} a^{10} + \frac{1942291294358873126133335141805190984396455382510787676214143777}{16708622513054782505310758650594139587149003713935252629508086368} a^{9} - \frac{791911127256539847337805732374391036622254848247370758436521087}{8354311256527391252655379325297069793574501856967626314754043184} a^{8} + \frac{302342631313706003395588800861012837123089586764348125263812573}{4177155628263695626327689662648534896787250928483813157377021592} a^{7} + \frac{7455481802221306478400450310298802774312672428001000212886934349}{33417245026109565010621517301188279174298007427870505259016172736} a^{6} + \frac{232298975230594821363683187628497616561823524869899056035389027}{4177155628263695626327689662648534896787250928483813157377021592} a^{5} + \frac{2294551742070915235314608373986050063979812263604925433470862843}{8354311256527391252655379325297069793574501856967626314754043184} a^{4} + \frac{155821015132921573829640820522619444293515013000322463414621962}{522144453532961953290961207831066862098406366060476644672127699} a^{3} - \frac{248810932763442038849959473378334472880405848630345196364490879}{2088577814131847813163844831324267448393625464241906578688510796} a^{2} + \frac{14882548381495816491474505302713258433718111793162665967584493}{36009962312618065744204221229728749110234921797274251356698462} a - \frac{1779984011537382626462557640300664003262226017084461242393511}{18004981156309032872102110614864374555117460898637125678349231}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $16$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 246815332729 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 1410877440 |
| The 429 conjugacy class representatives for t21n152 are not computed |
| Character table for t21n152 is not computed |
Intermediate fields
| 7.5.2369207.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }{,}\,{\href{/LocalNumberField/5.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.6.0.1}{6} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }$ | ${\href{/LocalNumberField/11.10.0.1}{10} }{,}\,{\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.5.0.1}{5} }$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/17.14.0.1}{14} }{,}\,{\href{/LocalNumberField/17.7.0.1}{7} }$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | R | R | ${\href{/LocalNumberField/31.9.0.1}{9} }{,}\,{\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }$ | ${\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | $15{,}\,{\href{/LocalNumberField/41.6.0.1}{6} }$ | $18{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{3}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | R | ${\href{/LocalNumberField/59.9.0.1}{9} }{,}\,{\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.7.0.1 | $x^{7} - x + 1$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ |
| 2.14.14.20 | $x^{14} + 4 x^{13} - x^{12} - 2 x^{11} + 2 x^{10} + 2 x^{9} + 2 x^{8} + 2 x^{7} + 2 x^{6} + 4 x^{4} - 2 x^{3} + 2 x^{2} + 2 x + 1$ | $2$ | $7$ | $14$ | 14T21 | $[2, 2, 2, 2, 2, 2]^{7}$ | |
| 3 | Data not computed | ||||||
| $23$ | 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.3.0.1 | $x^{3} - x + 4$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 23.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 23.6.0.1 | $x^{6} - x + 15$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| $29$ | $\Q_{29}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.3.2.1 | $x^{3} - 29$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 29.5.0.1 | $x^{5} - x + 11$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 29.10.0.1 | $x^{10} + x^{2} - 2 x + 2$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ | |
| $53$ | $\Q_{53}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{53}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 53.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 53.2.1.2 | $x^{2} + 106$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 53.3.0.1 | $x^{3} - x + 8$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 53.3.0.1 | $x^{3} - x + 8$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 53.3.0.1 | $x^{3} - x + 8$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 53.6.0.1 | $x^{6} - x + 8$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 239 | Data not computed | ||||||
| 431 | Data not computed | ||||||