Properties

Label 21.11.5396811891...3479.1
Degree $21$
Signature $[11, 5]$
Discriminant $-\,7^{14}\cdot 13\cdot 97\cdot 10039\cdot 628578004368802949$
Root discriminant $56.12$
Ramified primes $7, 13, 97, 10039, 628578004368802949$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 21T159

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, -6, 27, 180, 75, -1065, -1945, 627, 4464, 2119, -4188, -3615, 1949, 2445, -480, -892, 60, 186, -3, -21, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^21 - 21*x^19 - 3*x^18 + 186*x^17 + 60*x^16 - 892*x^15 - 480*x^14 + 2445*x^13 + 1949*x^12 - 3615*x^11 - 4188*x^10 + 2119*x^9 + 4464*x^8 + 627*x^7 - 1945*x^6 - 1065*x^5 + 75*x^4 + 180*x^3 + 27*x^2 - 6*x - 1)
 
gp: K = bnfinit(x^21 - 21*x^19 - 3*x^18 + 186*x^17 + 60*x^16 - 892*x^15 - 480*x^14 + 2445*x^13 + 1949*x^12 - 3615*x^11 - 4188*x^10 + 2119*x^9 + 4464*x^8 + 627*x^7 - 1945*x^6 - 1065*x^5 + 75*x^4 + 180*x^3 + 27*x^2 - 6*x - 1, 1)
 

Normalized defining polynomial

\( x^{21} - 21 x^{19} - 3 x^{18} + 186 x^{17} + 60 x^{16} - 892 x^{15} - 480 x^{14} + 2445 x^{13} + 1949 x^{12} - 3615 x^{11} - 4188 x^{10} + 2119 x^{9} + 4464 x^{8} + 627 x^{7} - 1945 x^{6} - 1065 x^{5} + 75 x^{4} + 180 x^{3} + 27 x^{2} - 6 x - 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $21$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[11, 5]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-5396811891984762047839189745295633479=-\,7^{14}\cdot 13\cdot 97\cdot 10039\cdot 628578004368802949\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $56.12$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $7, 13, 97, 10039, 628578004368802949$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{3} a^{7} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3}$, $\frac{1}{3} a^{8} - \frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} - \frac{1}{3} a$, $\frac{1}{3} a^{9} - \frac{1}{3} a^{6} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3}$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{4} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{3} a^{12} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{13} - \frac{1}{3} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3} a^{3}$, $\frac{1}{9} a^{14} + \frac{1}{9} a^{12} + \frac{1}{9} a^{11} - \frac{1}{9} a^{8} + \frac{1}{9} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{2}{9} a^{3} - \frac{4}{9} a^{2} + \frac{1}{9}$, $\frac{1}{9} a^{15} + \frac{1}{9} a^{13} + \frac{1}{9} a^{12} - \frac{1}{9} a^{9} + \frac{1}{9} a^{8} + \frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{9} a^{4} + \frac{2}{9} a^{3} + \frac{1}{3} a^{2} + \frac{1}{9} a + \frac{1}{3}$, $\frac{1}{9} a^{16} + \frac{1}{9} a^{13} - \frac{1}{9} a^{12} - \frac{1}{9} a^{11} - \frac{1}{9} a^{10} + \frac{1}{9} a^{9} + \frac{1}{9} a^{8} - \frac{1}{9} a^{7} + \frac{1}{3} a^{6} + \frac{1}{9} a^{5} + \frac{2}{9} a^{4} + \frac{2}{9} a^{3} - \frac{1}{9} a^{2} + \frac{1}{3} a + \frac{2}{9}$, $\frac{1}{9} a^{17} - \frac{1}{9} a^{13} + \frac{1}{9} a^{12} + \frac{1}{9} a^{11} + \frac{1}{9} a^{10} + \frac{1}{9} a^{9} - \frac{1}{9} a^{7} - \frac{2}{9} a^{6} - \frac{1}{9} a^{5} - \frac{4}{9} a^{4} + \frac{1}{9} a^{3} + \frac{4}{9} a^{2} - \frac{1}{9} a + \frac{2}{9}$, $\frac{1}{9} a^{18} + \frac{1}{9} a^{13} - \frac{1}{9} a^{12} - \frac{1}{9} a^{11} + \frac{1}{9} a^{10} + \frac{1}{9} a^{8} - \frac{1}{9} a^{7} - \frac{1}{9} a^{6} - \frac{1}{9} a^{5} + \frac{4}{9} a^{4} - \frac{4}{9} a^{3} + \frac{1}{9} a^{2} + \frac{2}{9} a + \frac{1}{9}$, $\frac{1}{9} a^{19} - \frac{1}{9} a^{13} + \frac{1}{9} a^{12} + \frac{1}{9} a^{9} + \frac{1}{9} a^{7} - \frac{4}{9} a^{6} + \frac{4}{9} a^{5} - \frac{4}{9} a^{4} + \frac{1}{3} a^{3} + \frac{1}{9} a - \frac{4}{9}$, $\frac{1}{9} a^{20} + \frac{1}{9} a^{13} + \frac{1}{9} a^{12} + \frac{1}{9} a^{11} + \frac{1}{9} a^{10} - \frac{2}{9} a^{6} - \frac{4}{9} a^{5} + \frac{1}{3} a^{4} + \frac{1}{9} a^{3} + \frac{1}{3} a^{2} - \frac{4}{9} a - \frac{2}{9}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $15$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 59912281265.3 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

21T159:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A non-solvable group of order 384072192000
The 1165 conjugacy class representatives for t21n159 are not computed
Character table for t21n159 is not computed

Intermediate fields

\(\Q(\zeta_{7})^+\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 42 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.12.0.1}{12} }{,}\,{\href{/LocalNumberField/2.6.0.1}{6} }{,}\,{\href{/LocalNumberField/2.3.0.1}{3} }$ $21$ $21$ R $15{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ R $18{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }$ ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }$ ${\href{/LocalNumberField/23.9.0.1}{9} }{,}\,{\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/29.7.0.1}{7} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.9.0.1}{9} }$ ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }$ ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{3}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{6}$ ${\href{/LocalNumberField/43.5.0.1}{5} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{3}$ ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.9.0.1}{9} }$ ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{3}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$7$7.6.4.3$x^{6} + 56 x^{3} + 1323$$3$$2$$4$$C_6$$[\ ]_{3}^{2}$
7.6.4.3$x^{6} + 56 x^{3} + 1323$$3$$2$$4$$C_6$$[\ ]_{3}^{2}$
7.9.6.1$x^{9} + 42 x^{6} + 539 x^{3} + 2744$$3$$3$$6$$C_3^2$$[\ ]_{3}^{3}$
$13$$\Q_{13}$$x + 2$$1$$1$$0$Trivial$[\ ]$
13.2.1.1$x^{2} - 13$$2$$1$$1$$C_2$$[\ ]_{2}$
13.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
13.3.0.1$x^{3} - 2 x + 6$$1$$3$$0$$C_3$$[\ ]^{3}$
13.6.0.1$x^{6} + x^{2} - 2 x + 2$$1$$6$$0$$C_6$$[\ ]^{6}$
13.7.0.1$x^{7} - 10 x + 2$$1$$7$$0$$C_7$$[\ ]^{7}$
$97$$\Q_{97}$$x + 5$$1$$1$$0$Trivial$[\ ]$
$\Q_{97}$$x + 5$$1$$1$$0$Trivial$[\ ]$
$\Q_{97}$$x + 5$$1$$1$$0$Trivial$[\ ]$
97.2.1.2$x^{2} + 485$$2$$1$$1$$C_2$$[\ ]_{2}$
97.2.0.1$x^{2} - x + 5$$1$$2$$0$$C_2$$[\ ]^{2}$
97.3.0.1$x^{3} - x + 5$$1$$3$$0$$C_3$$[\ ]^{3}$
97.5.0.1$x^{5} - x + 5$$1$$5$$0$$C_5$$[\ ]^{5}$
97.6.0.1$x^{6} - x + 10$$1$$6$$0$$C_6$$[\ ]^{6}$
10039Data not computed
628578004368802949Data not computed