Normalized defining polynomial
\( x^{21} - 3 x^{19} - 2 x^{18} - 207 x^{17} - 276 x^{16} + 745 x^{15} + 1674 x^{14} + 7029 x^{13} + 16016 x^{12} - 999 x^{11} - 48882 x^{10} - 79184 x^{9} - 73008 x^{8} - 35757 x^{7} + 55086 x^{6} + 166428 x^{5} + 199512 x^{4} + 135568 x^{3} + 54432 x^{2} + 12096 x + 1152 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[11, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-5170674349462897470243377350710078541633750155264=-\,2^{14}\cdot 3^{23}\cdot 13\cdot 31^{12}\cdot 41^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $208.78$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 13, 31, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{8} + \frac{1}{3} a^{2}$, $\frac{1}{3} a^{12} - \frac{1}{3} a^{9} + \frac{1}{3} a^{3}$, $\frac{1}{3} a^{13} - \frac{1}{3} a^{10} + \frac{1}{3} a^{4}$, $\frac{1}{3} a^{14} - \frac{1}{3} a^{8} + \frac{1}{3} a^{5} + \frac{1}{3} a^{2}$, $\frac{1}{120} a^{15} - \frac{1}{6} a^{14} + \frac{3}{40} a^{13} - \frac{7}{60} a^{12} + \frac{1}{24} a^{11} + \frac{13}{120} a^{9} + \frac{1}{20} a^{8} + \frac{11}{40} a^{7} - \frac{11}{30} a^{6} + \frac{37}{120} a^{5} - \frac{1}{20} a^{4} + \frac{11}{30} a^{3} - \frac{3}{8} a + \frac{7}{20}$, $\frac{1}{960} a^{16} + \frac{1}{480} a^{15} + \frac{89}{960} a^{14} - \frac{1}{60} a^{13} + \frac{19}{320} a^{12} + \frac{11}{96} a^{11} + \frac{111}{320} a^{10} + \frac{73}{240} a^{9} + \frac{1}{192} a^{8} + \frac{101}{480} a^{7} + \frac{149}{960} a^{6} - \frac{29}{120} a^{5} - \frac{17}{40} a^{4} + \frac{23}{60} a^{3} + \frac{71}{192} a^{2} - \frac{9}{80} a + \frac{17}{80}$, $\frac{1}{7680} a^{17} + \frac{7}{2560} a^{15} + \frac{223}{3840} a^{14} - \frac{167}{7680} a^{13} + \frac{223}{1920} a^{12} + \frac{433}{7680} a^{11} - \frac{827}{3840} a^{10} + \frac{1469}{7680} a^{9} + \frac{7}{20} a^{8} - \frac{469}{2560} a^{7} - \frac{99}{1280} a^{6} - \frac{83}{320} a^{5} + \frac{119}{240} a^{4} + \frac{1603}{7680} a^{3} - \frac{409}{3840} a^{2} + \frac{55}{128} a - \frac{129}{320}$, $\frac{1}{307200} a^{18} - \frac{1}{30720} a^{17} - \frac{107}{307200} a^{16} + \frac{41}{25600} a^{15} + \frac{14287}{102400} a^{14} - \frac{22271}{153600} a^{13} + \frac{13683}{102400} a^{12} - \frac{707}{9600} a^{11} + \frac{9623}{20480} a^{10} + \frac{7813}{51200} a^{9} - \frac{4823}{12288} a^{8} + \frac{8809}{76800} a^{7} - \frac{15173}{76800} a^{6} + \frac{2123}{19200} a^{5} - \frac{6323}{20480} a^{4} - \frac{2429}{19200} a^{3} + \frac{1519}{7680} a^{2} + \frac{191}{400} a - \frac{411}{6400}$, $\frac{1}{2457600} a^{19} - \frac{1}{614400} a^{18} + \frac{51}{819200} a^{17} - \frac{1}{16384} a^{16} - \frac{2969}{819200} a^{15} - \frac{5397}{51200} a^{14} + \frac{63799}{819200} a^{13} + \frac{11509}{81920} a^{12} - \frac{19213}{819200} a^{11} + \frac{49039}{204800} a^{10} - \frac{226649}{819200} a^{9} + \frac{1351}{409600} a^{8} + \frac{109441}{614400} a^{7} + \frac{4087}{307200} a^{6} - \frac{319519}{819200} a^{5} + \frac{540833}{1228800} a^{4} + \frac{37447}{307200} a^{3} - \frac{5469}{51200} a^{2} - \frac{963}{2048} a - \frac{6433}{25600}$, $\frac{1}{19660800} a^{20} + \frac{1}{9830400} a^{19} + \frac{1}{19660800} a^{18} - \frac{1}{38400} a^{17} + \frac{3889}{19660800} a^{16} + \frac{10381}{3276800} a^{15} - \frac{1437307}{19660800} a^{14} + \frac{349157}{4915200} a^{13} + \frac{702109}{19660800} a^{12} - \frac{623387}{9830400} a^{11} + \frac{3029647}{6553600} a^{10} - \frac{83671}{491520} a^{9} - \frac{4423}{10240} a^{8} - \frac{188801}{409600} a^{7} - \frac{162409}{3932160} a^{6} + \frac{426689}{983040} a^{5} - \frac{2333167}{4915200} a^{4} + \frac{162223}{614400} a^{3} - \frac{474667}{1228800} a^{2} - \frac{1921}{102400} a + \frac{14653}{102400}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 71373275446700000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 11757312 |
| The 168 conjugacy class representatives for t21n142 are not computed |
| Character table for t21n142 is not computed |
Intermediate fields
| 7.7.63649990841.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.6.0.1}{6} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }$ | $18{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }$ | R | $18{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }$ | ${\href{/LocalNumberField/23.14.0.1}{14} }{,}\,{\href{/LocalNumberField/23.7.0.1}{7} }$ | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | R | ${\href{/LocalNumberField/37.9.0.1}{9} }{,}\,{\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{3}$ | R | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/59.9.0.1}{9} }{,}\,{\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.7.0.1 | $x^{7} - x + 1$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ |
| 2.14.14.37 | $x^{14} + 4 x^{13} - 3 x^{12} - 2 x^{11} + 2 x^{10} - 2 x^{9} + 4 x^{7} + 2 x^{6} + 2 x^{5} + 4 x^{3} + 4 x^{2} - 2 x - 3$ | $2$ | $7$ | $14$ | 14T21 | $[2, 2, 2, 2, 2, 2]^{7}$ | |
| 3 | Data not computed | ||||||
| $13$ | $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 13.2.1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.6.0.1 | $x^{6} + x^{2} - 2 x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 13.12.0.1 | $x^{12} + x^{2} - x + 2$ | $1$ | $12$ | $0$ | $C_{12}$ | $[\ ]^{12}$ | |
| $31$ | $\Q_{31}$ | $x + 7$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 31.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 31.9.6.1 | $x^{9} + 837 x^{6} + 232562 x^{3} + 21717639$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ | |
| 31.9.6.1 | $x^{9} + 837 x^{6} + 232562 x^{3} + 21717639$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ | |
| $41$ | $\Q_{41}$ | $x + 6$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{41}$ | $x + 6$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{41}$ | $x + 6$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 41.6.3.1 | $x^{6} - 82 x^{4} + 1681 x^{2} - 11647649$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 41.12.6.1 | $x^{12} + 964894 x^{6} - 115856201 x^{2} + 232755107809$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |