Normalized defining polynomial
\( x^{21} - 72 x^{17} - 96 x^{16} - 86 x^{15} - 108 x^{14} + 1224 x^{13} + 3440 x^{12} + 4914 x^{11} + 6396 x^{10} + 2362 x^{9} - 13176 x^{8} - 32094 x^{7} - 46140 x^{6} - 53784 x^{5} - 48816 x^{4} - 30624 x^{3} - 12096 x^{2} - 2688 x - 256 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[11, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-5144587239008449606268116987075998504714240=-\,2^{32}\cdot 3^{21}\cdot 5\cdot 73^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $108.11$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 73$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{2} a^{14}$, $\frac{1}{8} a^{15} - \frac{1}{2} a^{13} + \frac{1}{4} a^{9} - \frac{1}{2} a^{8} + \frac{1}{4} a^{5} - \frac{1}{2} a^{4} + \frac{1}{4} a^{3} + \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{64} a^{16} + \frac{1}{32} a^{15} - \frac{1}{16} a^{14} - \frac{1}{8} a^{13} + \frac{3}{8} a^{12} + \frac{1}{4} a^{11} + \frac{5}{32} a^{10} - \frac{3}{8} a^{9} + \frac{1}{8} a^{8} - \frac{1}{2} a^{7} + \frac{9}{32} a^{6} - \frac{1}{2} a^{5} - \frac{11}{32} a^{4} - \frac{1}{16} a^{3} - \frac{11}{32} a^{2} + \frac{3}{8} a - \frac{3}{8}$, $\frac{1}{512} a^{17} + \frac{3}{64} a^{15} - \frac{1}{8} a^{14} + \frac{5}{64} a^{13} - \frac{3}{16} a^{12} - \frac{11}{256} a^{11} + \frac{37}{128} a^{10} + \frac{7}{64} a^{9} + \frac{13}{32} a^{8} - \frac{87}{256} a^{7} + \frac{15}{128} a^{6} - \frac{75}{256} a^{5} + \frac{21}{64} a^{4} + \frac{121}{256} a^{3} + \frac{17}{128} a^{2} + \frac{15}{64} a + \frac{11}{32}$, $\frac{1}{4096} a^{18} - \frac{1}{2048} a^{17} + \frac{3}{512} a^{16} - \frac{7}{256} a^{15} + \frac{85}{512} a^{14} - \frac{11}{256} a^{13} + \frac{85}{2048} a^{12} + \frac{3}{64} a^{11} + \frac{17}{256} a^{10} - \frac{45}{128} a^{9} + \frac{217}{2048} a^{8} - \frac{141}{512} a^{7} - \frac{647}{2048} a^{6} + \frac{373}{1024} a^{5} - \frac{559}{2048} a^{4} + \frac{19}{128} a^{3} + \frac{95}{256} a^{2} - \frac{9}{64} a - \frac{43}{128}$, $\frac{1}{32768} a^{19} - \frac{1}{8192} a^{18} + \frac{7}{8192} a^{17} - \frac{5}{1024} a^{16} + \frac{113}{4096} a^{15} - \frac{11}{64} a^{14} + \frac{261}{16384} a^{13} - \frac{1061}{8192} a^{12} - \frac{519}{2048} a^{11} - \frac{223}{512} a^{10} - \frac{2439}{16384} a^{9} - \frac{3571}{8192} a^{8} + \frac{481}{16384} a^{7} + \frac{511}{2048} a^{6} + \frac{6141}{16384} a^{5} + \frac{711}{8192} a^{4} - \frac{1005}{2048} a^{3} - \frac{497}{1024} a^{2} + \frac{121}{1024} a + \frac{171}{512}$, $\frac{1}{262144} a^{20} + \frac{1}{131072} a^{19} + \frac{1}{65536} a^{18} + \frac{1}{32768} a^{17} - \frac{7}{32768} a^{16} - \frac{13}{16384} a^{15} - \frac{251}{131072} a^{14} - \frac{139}{32768} a^{13} - \frac{125}{32768} a^{12} + \frac{45}{8192} a^{11} + \frac{3897}{131072} a^{10} + \frac{687}{8192} a^{9} + \frac{23165}{131072} a^{8} + \frac{19871}{65536} a^{7} + \frac{63437}{131072} a^{6} - \frac{6817}{32768} a^{5} + \frac{12411}{32768} a^{4} - \frac{439}{1024} a^{3} + \frac{211}{8192} a^{2} + \frac{11}{2048} a + \frac{1}{2048}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 317515413729000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 5878656 |
| The 183 conjugacy class representatives for t21n137 are not computed |
| Character table for t21n137 is not computed |
Intermediate fields
| 7.7.1817487424.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.14.0.1}{14} }{,}\,{\href{/LocalNumberField/7.7.0.1}{7} }$ | ${\href{/LocalNumberField/11.9.0.1}{9} }{,}\,{\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/13.9.0.1}{9} }{,}\,{\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}$ | $21$ | ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/29.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/37.9.0.1}{9} }{,}\,{\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/41.9.0.1}{9} }{,}\,{\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/43.14.0.1}{14} }{,}\,{\href{/LocalNumberField/43.7.0.1}{7} }$ | ${\href{/LocalNumberField/47.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/53.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/59.9.0.1}{9} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.7.6.1 | $x^{7} - 2$ | $7$ | $1$ | $6$ | $C_7:C_3$ | $[\ ]_{7}^{3}$ |
| 2.14.26.63 | $x^{14} + 2 x^{13} - 2 x^{12} + 2 x^{10} + 2 x^{8} - 2 x^{6} - 2 x^{4} + 4 x^{3} + 2 x^{2} + 4 x - 2$ | $14$ | $1$ | $26$ | 14T35 | $[18/7, 18/7, 18/7, 20/7, 20/7, 20/7]_{7}^{3}$ | |
| 3 | Data not computed | ||||||
| $5$ | $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 5.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 5.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 5.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 5.6.0.1 | $x^{6} - x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 73 | Data not computed | ||||||