Normalized defining polynomial
\( x^{21} + 21 x^{19} - 14 x^{18} - 2457 x^{15} + 4914 x^{14} - 16884 x^{13} + 37016 x^{12} - 19278 x^{11} - 40572 x^{10} + 241311 x^{9} - 723996 x^{8} + 1097907 x^{7} - 806246 x^{6} + 111132 x^{5} + 297864 x^{4} - 272496 x^{3} + 114912 x^{2} - 25536 x + 2432 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[11, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-5085862618644065944682370862103067572913300652032=-\,2^{14}\cdot 3^{21}\cdot 7^{36}\cdot 19^{2}\cdot 31\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $208.62$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 19, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{8} a^{15} - \frac{1}{2} a^{14} + \frac{1}{8} a^{13} - \frac{1}{4} a^{12} - \frac{1}{2} a^{11} - \frac{1}{8} a^{9} - \frac{1}{4} a^{8} + \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{1}{8} a^{3} - \frac{1}{8} a - \frac{1}{4}$, $\frac{1}{64} a^{16} - \frac{1}{32} a^{15} - \frac{15}{64} a^{14} + \frac{1}{4} a^{13} + \frac{1}{8} a^{12} - \frac{1}{2} a^{11} + \frac{23}{64} a^{10} - \frac{7}{16} a^{9} - \frac{5}{16} a^{8} - \frac{1}{4} a^{7} + \frac{1}{32} a^{6} - \frac{1}{2} a^{5} + \frac{15}{64} a^{4} - \frac{13}{32} a^{3} - \frac{17}{64} a^{2} + \frac{7}{16} a - \frac{1}{16}$, $\frac{1}{512} a^{17} - \frac{19}{512} a^{15} - \frac{103}{256} a^{14} + \frac{5}{64} a^{13} + \frac{7}{32} a^{12} + \frac{23}{512} a^{11} - \frac{119}{256} a^{10} - \frac{3}{128} a^{9} - \frac{15}{64} a^{8} + \frac{49}{256} a^{7} + \frac{41}{128} a^{6} - \frac{241}{512} a^{5} + \frac{17}{128} a^{4} - \frac{69}{512} a^{3} - \frac{67}{256} a^{2} - \frac{19}{128} a + \frac{31}{64}$, $\frac{1}{2412544} a^{18} + \frac{1}{2048} a^{17} + \frac{4269}{2412544} a^{16} - \frac{3951}{603136} a^{15} - \frac{15169}{603136} a^{14} - \frac{2043}{18848} a^{13} - \frac{325769}{2412544} a^{12} + \frac{125469}{301568} a^{11} - \frac{146175}{301568} a^{10} + \frac{59093}{150784} a^{9} + \frac{271769}{1206272} a^{8} - \frac{7629}{301568} a^{7} - \frac{589001}{2412544} a^{6} + \frac{262821}{1206272} a^{5} - \frac{7197}{2412544} a^{4} - \frac{98225}{301568} a^{3} - \frac{6103}{15872} a^{2} + \frac{779}{1984} a - \frac{2127}{7936}$, $\frac{1}{19300352} a^{19} - \frac{1}{4825088} a^{18} + \frac{6625}{19300352} a^{17} + \frac{32447}{9650176} a^{16} + \frac{291601}{4825088} a^{15} - \frac{105425}{2412544} a^{14} + \frac{267895}{19300352} a^{13} + \frac{49081}{507904} a^{12} - \frac{1195821}{2412544} a^{11} - \frac{1555}{31744} a^{10} + \frac{4289641}{9650176} a^{9} - \frac{1327441}{4825088} a^{8} - \frac{1654809}{19300352} a^{7} + \frac{559435}{2412544} a^{6} + \frac{2741239}{19300352} a^{5} - \frac{1944657}{9650176} a^{4} + \frac{141473}{2412544} a^{3} - \frac{13539}{63488} a^{2} - \frac{30215}{63488} a + \frac{6641}{31744}$, $\frac{1}{154402816} a^{20} - \frac{1}{77201408} a^{19} + \frac{25}{154402816} a^{18} - \frac{2313}{2412544} a^{17} - \frac{2399}{1206272} a^{16} + \frac{22853}{603136} a^{15} + \frac{68641895}{154402816} a^{14} - \frac{14158695}{38600704} a^{13} + \frac{13092433}{38600704} a^{12} - \frac{4687103}{9650176} a^{11} - \frac{5701047}{77201408} a^{10} - \frac{303549}{4825088} a^{9} + \frac{6651359}{154402816} a^{8} - \frac{36795885}{77201408} a^{7} - \frac{46503833}{154402816} a^{6} - \frac{7672589}{38600704} a^{5} - \frac{17846879}{38600704} a^{4} + \frac{239665}{1206272} a^{3} - \frac{113133}{507904} a^{2} - \frac{55019}{126976} a + \frac{10177}{126976}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 80989570243700000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1959552 |
| The 333 conjugacy class representatives for t21n123 are not computed |
| Character table for t21n123 is not computed |
Intermediate fields
| 7.7.13841287201.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.14.0.1}{14} }{,}\,{\href{/LocalNumberField/5.7.0.1}{7} }$ | R | ${\href{/LocalNumberField/11.14.0.1}{14} }{,}\,{\href{/LocalNumberField/11.7.0.1}{7} }$ | ${\href{/LocalNumberField/13.14.0.1}{14} }{,}\,{\href{/LocalNumberField/13.7.0.1}{7} }$ | ${\href{/LocalNumberField/17.7.0.1}{7} }^{3}$ | R | ${\href{/LocalNumberField/23.14.0.1}{14} }{,}\,{\href{/LocalNumberField/23.7.0.1}{7} }$ | ${\href{/LocalNumberField/29.7.0.1}{7} }^{3}$ | R | ${\href{/LocalNumberField/37.14.0.1}{14} }{,}\,{\href{/LocalNumberField/37.7.0.1}{7} }$ | ${\href{/LocalNumberField/41.14.0.1}{14} }{,}\,{\href{/LocalNumberField/41.7.0.1}{7} }$ | $21$ | ${\href{/LocalNumberField/47.7.0.1}{7} }^{3}$ | $21$ | $21$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.7.0.1 | $x^{7} - x + 1$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ |
| 2.14.14.22 | $x^{14} + 4 x^{13} + x^{12} + 4 x^{11} - 2 x^{10} + 2 x^{9} - 2 x^{8} + 4 x^{7} + 2 x^{6} - 2 x^{5} - 2 x^{4} - 2 x^{3} - 2 x^{2} + 4 x + 1$ | $2$ | $7$ | $14$ | $C_2 \wr C_7$ | $[2, 2, 2, 2, 2, 2, 2]^{7}$ | |
| 3 | Data not computed | ||||||
| 7 | Data not computed | ||||||
| $19$ | $\Q_{19}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{19}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{19}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{19}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{19}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.3.2.2 | $x^{3} - 19$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 19.3.0.1 | $x^{3} - x + 4$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| $31$ | $\Q_{31}$ | $x + 7$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{31}$ | $x + 7$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{31}$ | $x + 7$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{31}$ | $x + 7$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{31}$ | $x + 7$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{31}$ | $x + 7$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{31}$ | $x + 7$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{31}$ | $x + 7$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{31}$ | $x + 7$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{31}$ | $x + 7$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 31.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 31.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 31.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 31.2.1.2 | $x^{2} + 217$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 31.3.0.1 | $x^{3} - x + 9$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |