Normalized defining polynomial
\( x^{21} - 12 x^{19} - 14 x^{18} - 171 x^{17} + 762 x^{16} + 2775 x^{15} - 11556 x^{14} - 7095 x^{13} + 67730 x^{12} - 4464 x^{11} - 219000 x^{10} - 105816 x^{9} + 1080900 x^{8} - 492591 x^{7} - 3230200 x^{6} + 5102568 x^{5} - 1202184 x^{4} - 1646784 x^{3} + 1253952 x^{2} - 358272 x + 39808 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[11, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-482108591396798180036901678675500279119872=-\,2^{14}\cdot 3^{28}\cdot 23^{3}\cdot 239^{3}\cdot 311^{2}\cdot 431^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $96.59$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 23, 239, 311, 431$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{4} a^{16} - \frac{1}{2} a^{13} + \frac{1}{4} a^{12} - \frac{1}{2} a^{11} - \frac{1}{4} a^{10} + \frac{1}{4} a^{8} - \frac{1}{2} a^{7} + \frac{1}{4} a^{2}$, $\frac{1}{8} a^{17} + \frac{1}{4} a^{14} - \frac{3}{8} a^{13} + \frac{1}{4} a^{12} + \frac{3}{8} a^{11} - \frac{1}{2} a^{10} - \frac{3}{8} a^{9} + \frac{1}{4} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} + \frac{1}{8} a^{3} - \frac{1}{2} a$, $\frac{1}{16} a^{18} + \frac{1}{8} a^{15} + \frac{5}{16} a^{14} + \frac{1}{8} a^{13} + \frac{3}{16} a^{12} + \frac{1}{4} a^{11} - \frac{3}{16} a^{10} + \frac{1}{8} a^{9} - \frac{1}{4} a^{8} - \frac{1}{2} a^{6} + \frac{1}{4} a^{5} + \frac{1}{16} a^{4} - \frac{1}{2} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{32} a^{19} + \frac{1}{16} a^{16} + \frac{5}{32} a^{15} - \frac{7}{16} a^{14} - \frac{13}{32} a^{13} + \frac{1}{8} a^{12} - \frac{3}{32} a^{11} - \frac{7}{16} a^{10} - \frac{1}{8} a^{9} - \frac{1}{2} a^{8} + \frac{1}{4} a^{7} + \frac{1}{8} a^{6} - \frac{15}{32} a^{5} - \frac{1}{4} a^{4} - \frac{3}{8} a^{3} + \frac{1}{4} a^{2}$, $\frac{1}{18383828357065948724448464247932444054668148745445185119692096} a^{20} - \frac{104845904003424107441731544185013073563180625068841498089259}{9191914178532974362224232123966222027334074372722592559846048} a^{19} - \frac{4248377742955244650047230880974930069890305354834587776563}{2297978544633243590556058030991555506833518593180648139961512} a^{18} + \frac{332358158067921117121254676473567004536647206636074163534045}{9191914178532974362224232123966222027334074372722592559846048} a^{17} - \frac{686376345968363189836139493518066821386076501568396277642711}{18383828357065948724448464247932444054668148745445185119692096} a^{16} - \frac{14994976924972702880383368465001197850778727173341471732515}{4595957089266487181112116061983111013667037186361296279923024} a^{15} - \frac{7663342715931260209155226872096598190163095612128168100045089}{18383828357065948724448464247932444054668148745445185119692096} a^{14} - \frac{2631066882121948655660164653177973424493757376524827298330299}{9191914178532974362224232123966222027334074372722592559846048} a^{13} - \frac{8187404511659427726365144756216555539010346333544274208522915}{18383828357065948724448464247932444054668148745445185119692096} a^{12} - \frac{1768112022805463385695602704734005033973130612459668212549217}{4595957089266487181112116061983111013667037186361296279923024} a^{11} - \frac{1047036804620071763822938496312245780063808717667333614654879}{2297978544633243590556058030991555506833518593180648139961512} a^{10} + \frac{534092992863299452793270415992936941828926646512485553289679}{1148989272316621795278029015495777753416759296590324069980756} a^{9} - \frac{619652378149727611916686870933032567031561361545935517610783}{2297978544633243590556058030991555506833518593180648139961512} a^{8} - \frac{1142729186637885238784714955829125823439257117098924726296867}{4595957089266487181112116061983111013667037186361296279923024} a^{7} + \frac{6491298763011591480291263649624485656039284480199071163649817}{18383828357065948724448464247932444054668148745445185119692096} a^{6} + \frac{2910396482837956932815343750662544977286635029380294461819889}{9191914178532974362224232123966222027334074372722592559846048} a^{5} + \frac{99819970545353133437867524634659846579040689633456398972315}{4595957089266487181112116061983111013667037186361296279923024} a^{4} + \frac{164834971181464793749480752636564016844427318773573530061917}{2297978544633243590556058030991555506833518593180648139961512} a^{3} + \frac{135437838451130550356115783058845903239894189949946298773601}{574494636158310897639014507747888876708379648295162034990378} a^{2} - \frac{67770274460010783586522166100614107710507519348862040226056}{287247318079155448819507253873944438354189824147581017495189} a + \frac{124070989844403901198749449521850900028408520861989966449017}{287247318079155448819507253873944438354189824147581017495189}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 9904428893780 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 705438720 |
| The 261 conjugacy class representatives for t21n149 are not computed |
| Character table for t21n149 is not computed |
Intermediate fields
| 7.5.2369207.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.10.0.1}{10} }{,}\,{\href{/LocalNumberField/5.5.0.1}{5} }{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }$ | ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.9.0.1}{9} }$ | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.5.0.1}{5} }^{3}$ | $21$ | $21$ | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | R | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.5.0.1}{5} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | ${\href{/LocalNumberField/31.9.0.1}{9} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | $15{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.7.0.1 | $x^{7} - x + 1$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ |
| 2.14.14.3 | $x^{14} + 2 x^{13} + x^{12} + 2 x^{10} + 2 x^{5} - 1$ | $2$ | $7$ | $14$ | 14T6 | $[2, 2, 2]^{7}$ | |
| 3 | Data not computed | ||||||
| $23$ | 23.3.0.1 | $x^{3} - x + 4$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 23.3.0.1 | $x^{3} - x + 4$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 23.3.0.1 | $x^{3} - x + 4$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 23.6.0.1 | $x^{6} - x + 15$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 23.6.3.2 | $x^{6} - 529 x^{2} + 48668$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 239 | Data not computed | ||||||
| 311 | Data not computed | ||||||
| 431 | Data not computed | ||||||