Normalized defining polynomial
\( x^{21} - 2 x^{20} - 9 x^{19} + 12 x^{18} + 25 x^{17} + 8 x^{16} - 79 x^{15} + 7 x^{14} + 170 x^{13} - 132 x^{12} - 294 x^{11} - 136 x^{10} + 534 x^{9} + 158 x^{8} - 345 x^{7} + 242 x^{6} + 243 x^{5} - 58 x^{4} - 53 x^{3} - 6 x^{2} + 2 x + 1 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[11, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-3913912048328213377158221353159=-\,7^{5}\cdot 17^{8}\cdot 2017^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $28.63$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 17, 2017$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{51} a^{19} - \frac{1}{3} a^{18} - \frac{10}{51} a^{17} - \frac{25}{51} a^{16} + \frac{2}{51} a^{15} + \frac{1}{17} a^{14} - \frac{8}{17} a^{13} + \frac{7}{51} a^{12} - \frac{13}{51} a^{11} + \frac{5}{51} a^{10} + \frac{1}{51} a^{9} - \frac{1}{17} a^{8} + \frac{1}{3} a^{7} + \frac{8}{51} a^{6} - \frac{23}{51} a^{5} + \frac{6}{17} a^{4} - \frac{4}{51} a^{3} - \frac{16}{51} a^{2} - \frac{13}{51} a + \frac{1}{51}$, $\frac{1}{276266820308353926852243} a^{20} + \frac{1590189731017590564764}{276266820308353926852243} a^{19} - \frac{30500422167018097964723}{92088940102784642284081} a^{18} - \frac{102291791865290625998882}{276266820308353926852243} a^{17} - \frac{111894764051267492682467}{276266820308353926852243} a^{16} - \frac{23262080994744850410097}{276266820308353926852243} a^{15} - \frac{9760219397467728586546}{92088940102784642284081} a^{14} + \frac{68502529585440152237698}{276266820308353926852243} a^{13} + \frac{16103092142361477942839}{92088940102784642284081} a^{12} + \frac{121699421857170115322335}{276266820308353926852243} a^{11} - \frac{9734388459507645827529}{92088940102784642284081} a^{10} - \frac{89232117047012262642596}{276266820308353926852243} a^{9} - \frac{61850074257246569546695}{276266820308353926852243} a^{8} - \frac{2054593710730324551643}{12011600882971909863141} a^{7} + \frac{722157739387398945872}{4003866960990636621047} a^{6} + \frac{89449252064614374077080}{276266820308353926852243} a^{5} - \frac{31364481670765154148760}{276266820308353926852243} a^{4} + \frac{133538394105027662950588}{276266820308353926852243} a^{3} + \frac{115306907624482467283486}{276266820308353926852243} a^{2} + \frac{31434553065932889677413}{92088940102784642284081} a + \frac{89005797126827390633290}{276266820308353926852243}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 47695486.7102 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 5040 |
| The 15 conjugacy class representatives for t21n38 |
| Character table for t21n38 |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
| Degree 7 sibling: | 7.5.4080391.1 |
| Degree 14 sibling: | Deg 14 |
| Degree 30 sibling: | data not computed |
| Degree 35 sibling: | data not computed |
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }$ | ${\href{/LocalNumberField/5.7.0.1}{7} }^{3}$ | R | ${\href{/LocalNumberField/11.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{3}$ | R | ${\href{/LocalNumberField/19.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{3}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }$ | ${\href{/LocalNumberField/47.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }$ | ${\href{/LocalNumberField/59.7.0.1}{7} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 7.5.0.1 | $x^{5} - x + 4$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 7.5.0.1 | $x^{5} - x + 4$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 7.10.5.2 | $x^{10} - 2401 x^{2} + 67228$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| $17$ | $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.4.2.2 | $x^{4} - 17 x^{2} + 867$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 17.4.2.2 | $x^{4} - 17 x^{2} + 867$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 17.4.2.2 | $x^{4} - 17 x^{2} + 867$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 17.4.2.2 | $x^{4} - 17 x^{2} + 867$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 2017 | Data not computed | ||||||