Normalized defining polynomial
\( x^{21} - 6 x^{20} - x^{19} + 71 x^{18} - 93 x^{17} - 305 x^{16} + 665 x^{15} + 567 x^{14} - 2100 x^{13} - 214 x^{12} + 3718 x^{11} - 982 x^{10} - 3941 x^{9} + 1934 x^{8} + 2506 x^{7} - 1669 x^{6} - 928 x^{5} + 820 x^{4} + 128 x^{3} - 214 x^{2} + 45 x - 1 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[11, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-34428615704115413560094117894967=-\,3^{9}\cdot 280909^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $31.75$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 280909$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{13} - \frac{1}{2} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{13} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{17} - \frac{1}{2} a^{12} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{6} a^{18} + \frac{1}{6} a^{17} + \frac{1}{6} a^{16} - \frac{1}{6} a^{15} + \frac{1}{6} a^{14} - \frac{1}{6} a^{13} + \frac{1}{6} a^{12} - \frac{1}{3} a^{11} + \frac{1}{6} a^{10} + \frac{1}{3} a^{9} + \frac{1}{3} a^{8} + \frac{1}{6} a^{7} - \frac{1}{2} a^{6} + \frac{1}{3} a^{5} + \frac{1}{6} a^{4} - \frac{1}{6} a^{3} - \frac{1}{3} a^{2} - \frac{1}{6} a + \frac{1}{6}$, $\frac{1}{150} a^{19} - \frac{1}{50} a^{18} + \frac{6}{25} a^{17} + \frac{8}{75} a^{16} + \frac{11}{150} a^{15} - \frac{11}{150} a^{14} + \frac{19}{75} a^{13} - \frac{1}{2} a^{12} - \frac{9}{50} a^{11} + \frac{11}{30} a^{10} - \frac{3}{50} a^{9} - \frac{2}{75} a^{8} + \frac{4}{75} a^{7} + \frac{37}{75} a^{6} + \frac{71}{150} a^{5} + \frac{73}{150} a^{4} - \frac{43}{150} a^{3} - \frac{13}{75} a^{2} - \frac{14}{75} a + \frac{28}{75}$, $\frac{1}{150} a^{20} + \frac{1}{75} a^{18} + \frac{4}{25} a^{17} + \frac{17}{75} a^{16} - \frac{14}{75} a^{15} - \frac{2}{15} a^{14} - \frac{11}{150} a^{13} + \frac{23}{150} a^{12} - \frac{17}{50} a^{11} + \frac{28}{75} a^{10} + \frac{23}{50} a^{9} - \frac{9}{25} a^{8} + \frac{73}{150} a^{7} - \frac{7}{150} a^{6} - \frac{32}{75} a^{5} + \frac{1}{150} a^{4} - \frac{11}{30} a^{3} - \frac{28}{75} a^{2} - \frac{1}{50} a + \frac{34}{75}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 130916585.101 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 5040 |
| The 15 conjugacy class representatives for t21n38 |
| Character table for t21n38 |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
| Degree 7 sibling: | 7.5.7584543.1 |
| Degree 14 sibling: | Deg 14 |
| Degree 30 sibling: | data not computed |
| Degree 35 sibling: | data not computed |
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.7.0.1}{7} }^{3}$ | R | ${\href{/LocalNumberField/5.12.0.1}{12} }{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }$ | ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | ${\href{/LocalNumberField/11.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }{,}\,{\href{/LocalNumberField/13.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | ${\href{/LocalNumberField/31.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }$ | ${\href{/LocalNumberField/59.7.0.1}{7} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 280909 | Data not computed | ||||||