Normalized defining polynomial
\( x^{21} + 36 x^{19} - 24 x^{18} + 108 x^{17} - 144 x^{16} - 6648 x^{15} + 13392 x^{14} - 50400 x^{13} + 112576 x^{12} + 83808 x^{11} - 598848 x^{10} + 1555648 x^{9} - 3375360 x^{8} + 2618112 x^{7} + 6278144 x^{6} - 18828288 x^{5} + 22671360 x^{4} - 15421440 x^{3} + 6193152 x^{2} - 1376256 x + 131072 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[11, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-329274195048166752324572139831383256839602176=-\,2^{14}\cdot 3^{21}\cdot 7^{12}\cdot 173^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $131.79$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 173$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2}$, $\frac{1}{2} a^{3}$, $\frac{1}{4} a^{4}$, $\frac{1}{4} a^{5}$, $\frac{1}{8} a^{6}$, $\frac{1}{8} a^{7}$, $\frac{1}{16} a^{8}$, $\frac{1}{16} a^{9}$, $\frac{1}{32} a^{10}$, $\frac{1}{32} a^{11}$, $\frac{1}{64} a^{12}$, $\frac{1}{128} a^{13} - \frac{1}{32} a^{9} - \frac{1}{16} a^{7} - \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{256} a^{14} - \frac{1}{64} a^{10} - \frac{1}{32} a^{8} - \frac{1}{16} a^{7} - \frac{1}{8} a^{4} - \frac{1}{4} a^{3} - \frac{1}{4} a^{2}$, $\frac{1}{1024} a^{15} - \frac{1}{512} a^{14} - \frac{1}{128} a^{12} + \frac{3}{256} a^{11} - \frac{1}{128} a^{10} - \frac{1}{128} a^{9} - \frac{1}{32} a^{8} - \frac{1}{32} a^{7} - \frac{1}{32} a^{5} - \frac{1}{16} a^{3} - \frac{1}{8} a^{2}$, $\frac{1}{2048} a^{16} - \frac{1}{512} a^{14} - \frac{1}{256} a^{13} - \frac{1}{512} a^{12} - \frac{1}{128} a^{11} - \frac{3}{256} a^{10} + \frac{1}{128} a^{9} + \frac{1}{64} a^{8} - \frac{1}{32} a^{7} - \frac{1}{64} a^{6} - \frac{1}{32} a^{5} - \frac{1}{32} a^{4} - \frac{1}{8} a^{3} - \frac{1}{8} a^{2} - \frac{1}{2} a$, $\frac{1}{8192} a^{17} - \frac{1}{2048} a^{15} + \frac{1}{1024} a^{14} - \frac{1}{2048} a^{13} + \frac{3}{512} a^{12} - \frac{3}{1024} a^{11} - \frac{3}{512} a^{10} - \frac{7}{256} a^{9} - \frac{3}{128} a^{8} + \frac{15}{256} a^{7} + \frac{7}{128} a^{6} - \frac{1}{128} a^{5} + \frac{1}{32} a^{4} + \frac{7}{32} a^{3}$, $\frac{1}{32768} a^{18} - \frac{1}{16384} a^{17} - \frac{1}{8192} a^{16} - \frac{1}{2048} a^{15} - \frac{5}{8192} a^{14} - \frac{9}{4096} a^{13} - \frac{15}{4096} a^{12} + \frac{1}{256} a^{11} - \frac{1}{256} a^{10} - \frac{1}{32} a^{9} + \frac{11}{1024} a^{8} + \frac{3}{64} a^{7} + \frac{17}{512} a^{6} - \frac{21}{256} a^{5} - \frac{3}{128} a^{4} - \frac{11}{64} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{131072} a^{19} - \frac{1}{16384} a^{17} - \frac{3}{16384} a^{16} - \frac{13}{32768} a^{15} - \frac{7}{8192} a^{14} - \frac{33}{16384} a^{13} - \frac{7}{8192} a^{12} + \frac{1}{1024} a^{11} - \frac{5}{512} a^{10} + \frac{11}{4096} a^{9} - \frac{29}{2048} a^{8} + \frac{1}{2048} a^{7} - \frac{1}{256} a^{6} + \frac{5}{64} a^{5} + \frac{9}{128} a^{4} + \frac{21}{128} a^{3} - \frac{1}{8} a^{2} + \frac{1}{8} a - \frac{1}{4}$, $\frac{1}{524288} a^{20} - \frac{1}{262144} a^{19} - \frac{1}{65536} a^{18} - \frac{1}{65536} a^{17} - \frac{1}{131072} a^{16} - \frac{1}{65536} a^{15} - \frac{5}{65536} a^{14} - \frac{51}{16384} a^{13} + \frac{11}{16384} a^{12} - \frac{3}{1024} a^{11} + \frac{91}{16384} a^{10} + \frac{27}{1024} a^{9} - \frac{197}{8192} a^{8} + \frac{123}{4096} a^{7} - \frac{21}{512} a^{6} - \frac{11}{512} a^{5} + \frac{3}{512} a^{4} - \frac{61}{256} a^{3} + \frac{3}{32} a^{2} + \frac{1}{8} a - \frac{3}{8}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1077669342130000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 11757312 |
| The 168 conjugacy class representatives for t21n142 are not computed |
| Character table for t21n142 is not computed |
Intermediate fields
| 7.7.12431698517.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.12.0.1}{12} }{,}\,{\href{/LocalNumberField/5.6.0.1}{6} }{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }$ | R | ${\href{/LocalNumberField/11.12.0.1}{12} }{,}\,{\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }$ | $21$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.9.0.1}{9} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.14.0.1}{14} }{,}\,{\href{/LocalNumberField/29.7.0.1}{7} }$ | ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | ${\href{/LocalNumberField/37.9.0.1}{9} }{,}\,{\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.14.0.1}{14} }{,}\,{\href{/LocalNumberField/41.7.0.1}{7} }$ | ${\href{/LocalNumberField/43.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{5}$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{3}$ | $18{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.6.0.1 | $x^{6} - x + 1$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 2.12.12.20 | $x^{12} - 18 x^{10} - 49 x^{8} - 52 x^{6} + 39 x^{4} + 6 x^{2} + 9$ | $2$ | $6$ | $12$ | 12T87 | $[2, 2, 2, 2, 2]^{6}$ | |
| 3 | Data not computed | ||||||
| $7$ | $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 7.6.4.3 | $x^{6} + 56 x^{3} + 1323$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 7.12.8.1 | $x^{12} - 63 x^{9} + 637 x^{6} + 6174 x^{3} + 300125$ | $3$ | $4$ | $8$ | $C_{12}$ | $[\ ]_{3}^{4}$ | |
| $173$ | $\Q_{173}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 173.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 173.6.3.1 | $x^{6} - 346 x^{4} + 29929 x^{2} - 129442925$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 173.12.6.1 | $x^{12} + 196753246 x^{6} - 154963892093 x^{2} + 9677959952884129$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |