Normalized defining polynomial
\( x^{21} - 3 x^{19} - 2 x^{18} - 90 x^{17} - 120 x^{16} + 68 x^{15} + 216 x^{14} + 1521 x^{13} + 3704 x^{12} + 2700 x^{11} - 1608 x^{10} - 9151 x^{9} - 23292 x^{8} - 32793 x^{7} - 20162 x^{6} + 5292 x^{5} + 18648 x^{4} + 14672 x^{3} + 6048 x^{2} + 1344 x + 128 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[11, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-237714117824906601657941050896630528000000=-\,2^{14}\cdot 3^{21}\cdot 5^{6}\cdot 6679^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $93.39$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 6679$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{8} a^{15} - \frac{1}{2} a^{14} + \frac{1}{8} a^{13} + \frac{1}{4} a^{12} + \frac{1}{4} a^{11} - \frac{1}{2} a^{9} + \frac{1}{8} a^{7} - \frac{1}{2} a^{6} + \frac{1}{8} a^{3} + \frac{3}{8} a + \frac{1}{4}$, $\frac{1}{64} a^{16} + \frac{1}{32} a^{15} + \frac{25}{64} a^{14} - \frac{1}{4} a^{13} - \frac{9}{32} a^{12} - \frac{3}{16} a^{11} - \frac{5}{16} a^{10} + \frac{1}{4} a^{9} + \frac{17}{64} a^{8} + \frac{13}{32} a^{7} + \frac{3}{8} a^{6} - \frac{3}{8} a^{5} - \frac{31}{64} a^{4} + \frac{3}{32} a^{3} + \frac{11}{64} a^{2} - \frac{3}{16} a - \frac{5}{16}$, $\frac{1}{512} a^{17} + \frac{21}{512} a^{15} - \frac{33}{256} a^{14} - \frac{25}{256} a^{13} + \frac{3}{64} a^{12} + \frac{1}{128} a^{11} - \frac{25}{64} a^{10} + \frac{241}{512} a^{9} - \frac{25}{64} a^{8} - \frac{7}{128} a^{7} - \frac{25}{64} a^{6} + \frac{209}{512} a^{5} - \frac{15}{128} a^{4} + \frac{63}{512} a^{3} - \frac{17}{256} a^{2} + \frac{49}{128} a + \frac{21}{64}$, $\frac{1}{28672} a^{18} + \frac{1}{2048} a^{17} - \frac{43}{28672} a^{16} + \frac{281}{7168} a^{15} + \frac{5113}{14336} a^{14} + \frac{1367}{7168} a^{13} - \frac{1675}{7168} a^{12} + \frac{743}{1792} a^{11} - \frac{9983}{28672} a^{10} - \frac{6605}{14336} a^{9} + \frac{1325}{7168} a^{8} + \frac{403}{1792} a^{7} - \frac{5151}{28672} a^{6} - \frac{3431}{14336} a^{5} - \frac{13129}{28672} a^{4} + \frac{91}{256} a^{3} - \frac{251}{3584} a^{2} - \frac{349}{896} a + \frac{547}{1792}$, $\frac{1}{229376} a^{19} - \frac{1}{57344} a^{18} + \frac{153}{229376} a^{17} - \frac{843}{114688} a^{16} - \frac{3883}{114688} a^{15} + \frac{5787}{28672} a^{14} + \frac{18295}{57344} a^{13} + \frac{11633}{28672} a^{12} + \frac{21537}{229376} a^{11} + \frac{22805}{57344} a^{10} - \frac{13463}{28672} a^{9} - \frac{4847}{28672} a^{8} + \frac{59777}{229376} a^{7} + \frac{2571}{7168} a^{6} + \frac{3315}{229376} a^{5} - \frac{49671}{114688} a^{4} - \frac{839}{28672} a^{3} + \frac{759}{2048} a^{2} - \frac{287}{2048} a + \frac{1461}{7168}$, $\frac{1}{1835008} a^{20} + \frac{1}{917504} a^{19} + \frac{1}{1835008} a^{18} + \frac{1}{1792} a^{17} - \frac{6189}{917504} a^{16} - \frac{2461}{65536} a^{15} + \frac{102779}{458752} a^{14} + \frac{21323}{114688} a^{13} + \frac{376657}{1835008} a^{12} + \frac{274061}{917504} a^{11} + \frac{4883}{28672} a^{10} - \frac{24345}{229376} a^{9} - \frac{650575}{1835008} a^{8} + \frac{331059}{917504} a^{7} - \frac{478029}{1835008} a^{6} - \frac{129111}{458752} a^{5} + \frac{22619}{65536} a^{4} + \frac{8931}{28672} a^{3} + \frac{38317}{114688} a^{2} + \frac{2357}{28672} a - \frac{3713}{28672}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 12200061834400 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 705438720 |
| The 246 conjugacy class representatives for t21n151 are not computed |
| Character table for t21n151 is not computed |
Intermediate fields
| 7.7.1115226025.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.9.0.1}{9} }{,}\,{\href{/LocalNumberField/7.6.0.1}{6} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | $21$ | ${\href{/LocalNumberField/23.14.0.1}{14} }{,}\,{\href{/LocalNumberField/23.7.0.1}{7} }$ | ${\href{/LocalNumberField/29.14.0.1}{14} }{,}\,{\href{/LocalNumberField/29.7.0.1}{7} }$ | ${\href{/LocalNumberField/31.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.14.0.1}{14} }{,}\,{\href{/LocalNumberField/41.7.0.1}{7} }$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{3}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.14.0.1}{14} }{,}\,{\href{/LocalNumberField/59.7.0.1}{7} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.7.0.1 | $x^{7} - x + 1$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ |
| 2.14.14.2 | $x^{14} + 2 x^{13} - x^{12} + 2 x^{10} + 2 x^{9} + 2 x^{7} + 2 x + 1$ | $2$ | $7$ | $14$ | 14T9 | $[2, 2, 2]^{14}$ | |
| 3 | Data not computed | ||||||
| $5$ | 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 5.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.6.3.2 | $x^{6} - 25 x^{2} + 250$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 5.6.0.1 | $x^{6} - x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 6679 | Data not computed | ||||||