Normalized defining polynomial
\( x^{21} - 21 x^{19} - 14 x^{18} - 54 x^{17} - 72 x^{16} + 1947 x^{15} + 3942 x^{14} - 1098 x^{13} - 9352 x^{12} + 129303 x^{11} + 459714 x^{10} + 249230 x^{9} - 1062936 x^{8} - 7283943 x^{7} - 25324998 x^{6} - 47407788 x^{5} - 51752376 x^{4} - 34339664 x^{3} - 13722912 x^{2} - 3049536 x - 290432 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[11, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-23681017647282083374222184484113019484225536=-\,2^{14}\cdot 3^{28}\cdot 107^{3}\cdot 2269^{2}\cdot 21557^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $116.26$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 107, 2269, 21557$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{3} a^{3} + \frac{1}{3}$, $\frac{1}{3} a^{4} + \frac{1}{3} a$, $\frac{1}{3} a^{5} + \frac{1}{3} a^{2}$, $\frac{1}{9} a^{6} - \frac{1}{9} a^{3} - \frac{2}{9}$, $\frac{1}{9} a^{7} - \frac{1}{9} a^{4} - \frac{2}{9} a$, $\frac{1}{9} a^{8} - \frac{1}{9} a^{5} - \frac{2}{9} a^{2}$, $\frac{1}{27} a^{9} - \frac{1}{9} a^{3} - \frac{2}{27}$, $\frac{1}{27} a^{10} - \frac{1}{9} a^{4} - \frac{2}{27} a$, $\frac{1}{27} a^{11} - \frac{1}{9} a^{5} - \frac{2}{27} a^{2}$, $\frac{1}{81} a^{12} + \frac{1}{81} a^{9} - \frac{1}{27} a^{6} - \frac{5}{81} a^{3} - \frac{2}{81}$, $\frac{1}{81} a^{13} + \frac{1}{81} a^{10} - \frac{1}{27} a^{7} - \frac{5}{81} a^{4} - \frac{2}{81} a$, $\frac{1}{81} a^{14} + \frac{1}{81} a^{11} - \frac{1}{27} a^{8} - \frac{5}{81} a^{5} - \frac{2}{81} a^{2}$, $\frac{1}{1944} a^{15} - \frac{1}{162} a^{14} - \frac{1}{216} a^{13} - \frac{5}{972} a^{12} + \frac{1}{324} a^{11} - \frac{5}{1944} a^{9} + \frac{5}{108} a^{8} - \frac{1}{36} a^{7} - \frac{10}{243} a^{6} - \frac{43}{648} a^{5} - \frac{17}{108} a^{4} - \frac{95}{972} a^{3} + \frac{22}{81} a^{2} + \frac{3}{8} a + \frac{191}{972}$, $\frac{1}{15552} a^{16} + \frac{1}{7776} a^{15} - \frac{19}{5184} a^{14} - \frac{1}{243} a^{13} - \frac{31}{7776} a^{12} - \frac{7}{1296} a^{11} - \frac{77}{15552} a^{10} + \frac{59}{3888} a^{9} + \frac{35}{864} a^{8} + \frac{61}{3888} a^{7} + \frac{479}{15552} a^{6} - \frac{17}{162} a^{5} + \frac{715}{7776} a^{4} + \frac{241}{3888} a^{3} - \frac{277}{5184} a^{2} - \frac{1529}{3888} a + \frac{257}{3888}$, $\frac{1}{124416} a^{17} + \frac{1}{41472} a^{15} + \frac{217}{62208} a^{14} + \frac{11}{20736} a^{13} - \frac{25}{5184} a^{12} + \frac{475}{124416} a^{11} + \frac{257}{20736} a^{10} - \frac{35}{2304} a^{9} - \frac{487}{15552} a^{8} + \frac{383}{13824} a^{7} - \frac{421}{20736} a^{6} + \frac{10027}{62208} a^{5} + \frac{713}{5184} a^{4} + \frac{3667}{41472} a^{3} + \frac{22445}{62208} a^{2} - \frac{1391}{10368} a + \frac{359}{1728}$, $\frac{1}{2985984} a^{18} + \frac{1}{497664} a^{17} + \frac{1}{995328} a^{16} - \frac{5}{248832} a^{15} - \frac{67}{497664} a^{14} - \frac{145}{248832} a^{13} - \frac{461}{331776} a^{12} - \frac{137}{124416} a^{11} + \frac{2507}{497664} a^{10} - \frac{5857}{746496} a^{9} + \frac{37901}{995328} a^{8} - \frac{9623}{248832} a^{7} - \frac{19237}{497664} a^{6} - \frac{37955}{248832} a^{5} + \frac{132611}{995328} a^{4} - \frac{343}{6912} a^{3} + \frac{799}{124416} a^{2} - \frac{4643}{15552} a + \frac{78301}{186624}$, $\frac{1}{23887872} a^{19} - \frac{1}{5971968} a^{18} - \frac{19}{7962624} a^{17} - \frac{5}{1327104} a^{16} + \frac{11}{1327104} a^{15} + \frac{95}{995328} a^{14} + \frac{4417}{7962624} a^{13} + \frac{6367}{3981312} a^{12} + \frac{7987}{3981312} a^{11} - \frac{7907}{2985984} a^{10} - \frac{426161}{23887872} a^{9} + \frac{67729}{3981312} a^{8} + \frac{815}{442368} a^{7} - \frac{4445}{110592} a^{6} + \frac{102523}{7962624} a^{5} - \frac{411271}{3981312} a^{4} - \frac{144821}{995328} a^{3} - \frac{91687}{497664} a^{2} + \frac{61765}{1492992} a + \frac{320431}{746496}$, $\frac{1}{191102976} a^{20} + \frac{1}{95551488} a^{19} - \frac{17}{191102976} a^{18} - \frac{1}{3981312} a^{17} - \frac{25}{31850496} a^{16} - \frac{31}{15925248} a^{15} + \frac{401}{63700992} a^{14} + \frac{529}{15925248} a^{13} + \frac{1933}{31850496} a^{12} + \frac{3461}{47775744} a^{11} + \frac{156991}{191102976} a^{10} + \frac{12089}{2985984} a^{9} + \frac{299437}{31850496} a^{8} + \frac{210859}{15925248} a^{7} - \frac{741109}{63700992} a^{6} - \frac{2480971}{15925248} a^{5} + \frac{1704241}{15925248} a^{4} - \frac{113027}{1990656} a^{3} + \frac{478759}{11943936} a^{2} - \frac{970369}{2985984} a + \frac{997597}{2985984}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 94973411061400 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 705438720 |
| The 261 conjugacy class representatives for t21n149 are not computed |
| Character table for t21n149 is not computed |
Intermediate fields
| 7.5.2306599.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | $21$ | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.6.0.1}{6} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }$ | ${\href{/LocalNumberField/11.10.0.1}{10} }{,}\,{\href{/LocalNumberField/11.5.0.1}{5} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | $21$ | $21$ | ${\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{3}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | $21$ | ${\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }{,}\,{\href{/LocalNumberField/43.5.0.1}{5} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }$ | ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{5}$ | $18{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.7.0.1 | $x^{7} - x + 1$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ |
| 2.14.14.23 | $x^{14} + x^{12} + 2 x^{11} + 2 x^{10} + 2 x^{9} + 2 x^{8} + 2 x^{4} + 2 x^{3} + 2 x^{2} + 2 x + 1$ | $2$ | $7$ | $14$ | 14T6 | $[2, 2, 2]^{7}$ | |
| $3$ | 3.9.12.12 | $x^{9} + 3 x^{6} + 18 x^{5} + 54$ | $3$ | $3$ | $12$ | $C_3 \wr C_3 $ | $[2, 2, 2]^{3}$ |
| 3.12.16.5 | $x^{12} + 81 x^{11} + 198 x^{10} - 315 x^{9} - 126 x^{8} - 297 x^{7} + 351 x^{6} + 81 x^{5} - 243 x^{4} - 54 x^{3} - 243 x^{2} - 324$ | $3$ | $4$ | $16$ | 12T131 | $[2, 2, 2, 2]^{4}$ | |
| 107 | Data not computed | ||||||
| 2269 | Data not computed | ||||||
| 21557 | Data not computed | ||||||