Normalized defining polynomial
\( x^{21} + 21 x^{19} - 14 x^{18} - 99 x^{17} + 132 x^{16} - 3851 x^{15} + 7614 x^{14} - 13905 x^{13} + 24672 x^{12} + 86535 x^{11} - 356466 x^{10} + 760871 x^{9} - 1419660 x^{8} + 1233567 x^{7} + 1621218 x^{6} - 5701428 x^{5} + 7018920 x^{4} - 4799280 x^{3} + 1929312 x^{2} - 428736 x + 40832 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[11, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-20999001542048815263956213456361659483283259392=-\,2^{46}\cdot 3^{21}\cdot 11^{2}\cdot 29^{2}\cdot 809^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $160.63$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 11, 29, 809$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{5} - \frac{1}{2} a^{2} - \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{4} a^{6} - \frac{1}{4} a^{2}$, $\frac{1}{8} a^{7} - \frac{1}{8} a^{5} - \frac{1}{4} a^{4} - \frac{1}{8} a^{3} + \frac{1}{8} a + \frac{1}{4}$, $\frac{1}{8} a^{8} - \frac{1}{8} a^{6} - \frac{1}{8} a^{4} - \frac{3}{8} a^{2} - \frac{1}{2}$, $\frac{1}{16} a^{9} - \frac{1}{8} a^{6} - \frac{1}{8} a^{5} - \frac{1}{8} a^{4} - \frac{3}{8} a^{2} + \frac{1}{16} a - \frac{3}{8}$, $\frac{1}{16} a^{10} - \frac{1}{8} a^{6} - \frac{1}{4} a^{4} - \frac{7}{16} a^{2} - \frac{1}{4}$, $\frac{1}{32} a^{11} - \frac{1}{32} a^{10} - \frac{1}{16} a^{7} - \frac{1}{16} a^{6} + \frac{1}{8} a^{4} + \frac{1}{32} a^{3} + \frac{3}{32} a^{2} - \frac{1}{8}$, $\frac{1}{32} a^{12} - \frac{1}{32} a^{10} - \frac{1}{16} a^{8} - \frac{1}{16} a^{6} - \frac{3}{32} a^{4} + \frac{3}{32} a^{2} + \frac{1}{8}$, $\frac{1}{64} a^{13} - \frac{1}{64} a^{12} - \frac{1}{64} a^{11} + \frac{1}{64} a^{10} - \frac{1}{32} a^{9} - \frac{1}{32} a^{8} + \frac{1}{32} a^{7} + \frac{3}{32} a^{6} + \frac{1}{64} a^{5} - \frac{1}{64} a^{4} - \frac{1}{64} a^{3} - \frac{7}{64} a^{2} + \frac{1}{16}$, $\frac{1}{64} a^{14} + \frac{1}{64} a^{10} - \frac{1}{16} a^{8} + \frac{3}{64} a^{6} - \frac{1}{4} a^{4} - \frac{5}{64} a^{2} + \frac{5}{16}$, $\frac{1}{128} a^{15} - \frac{1}{128} a^{14} + \frac{1}{128} a^{11} + \frac{3}{128} a^{10} + \frac{1}{32} a^{8} - \frac{5}{128} a^{7} + \frac{13}{128} a^{6} - \frac{3}{16} a^{4} + \frac{3}{128} a^{3} - \frac{15}{128} a^{2} + \frac{5}{32}$, $\frac{1}{256} a^{16} - \frac{1}{256} a^{14} - \frac{3}{256} a^{12} - \frac{1}{64} a^{11} - \frac{1}{256} a^{10} + \frac{1}{64} a^{9} + \frac{7}{256} a^{8} + \frac{1}{32} a^{7} + \frac{5}{256} a^{6} - \frac{1}{32} a^{5} + \frac{55}{256} a^{4} - \frac{1}{64} a^{3} + \frac{125}{256} a^{2} + \frac{1}{64} a + \frac{17}{64}$, $\frac{1}{4096} a^{17} - \frac{1}{512} a^{16} - \frac{3}{4096} a^{15} - \frac{11}{2048} a^{14} + \frac{5}{4096} a^{13} - \frac{13}{1024} a^{12} - \frac{51}{4096} a^{11} + \frac{27}{2048} a^{10} - \frac{9}{4096} a^{9} - \frac{25}{512} a^{8} + \frac{207}{4096} a^{7} - \frac{85}{2048} a^{6} - \frac{481}{4096} a^{5} + \frac{35}{1024} a^{4} + \frac{487}{4096} a^{3} + \frac{389}{2048} a^{2} - \frac{167}{1024} a + \frac{31}{512}$, $\frac{1}{65536} a^{18} - \frac{3}{32768} a^{17} + \frac{45}{65536} a^{16} - \frac{55}{16384} a^{15} - \frac{295}{65536} a^{14} + \frac{43}{32768} a^{13} + \frac{933}{65536} a^{12} - \frac{47}{4096} a^{11} + \frac{227}{65536} a^{10} - \frac{877}{32768} a^{9} + \frac{2047}{65536} a^{8} + \frac{685}{16384} a^{7} - \frac{2357}{65536} a^{6} + \frac{1701}{32768} a^{5} + \frac{15295}{65536} a^{4} - \frac{493}{8192} a^{3} + \frac{2623}{8192} a^{2} - \frac{253}{1024} a - \frac{961}{4096}$, $\frac{1}{1048576} a^{19} - \frac{1}{262144} a^{18} + \frac{33}{1048576} a^{17} - \frac{65}{524288} a^{16} + \frac{289}{1048576} a^{15} - \frac{63}{131072} a^{14} - \frac{2991}{1048576} a^{13} - \frac{5587}{524288} a^{12} + \frac{9987}{1048576} a^{11} + \frac{7355}{262144} a^{10} - \frac{5557}{1048576} a^{9} + \frac{3417}{524288} a^{8} + \frac{34867}{1048576} a^{7} - \frac{425}{32768} a^{6} - \frac{31149}{1048576} a^{5} - \frac{33781}{524288} a^{4} - \frac{12059}{131072} a^{3} + \frac{20939}{65536} a^{2} + \frac{4951}{65536} a - \frac{11969}{32768}$, $\frac{1}{16777216} a^{20} - \frac{1}{8388608} a^{19} + \frac{25}{16777216} a^{18} - \frac{1}{262144} a^{17} + \frac{29}{16777216} a^{16} + \frac{37}{8388608} a^{15} - \frac{3999}{16777216} a^{14} + \frac{3903}{4194304} a^{13} - \frac{45129}{16777216} a^{12} + \frac{57465}{8388608} a^{11} - \frac{143325}{16777216} a^{10} - \frac{8727}{2097152} a^{9} + \frac{900503}{16777216} a^{8} + \frac{486819}{8388608} a^{7} - \frac{713709}{16777216} a^{6} - \frac{286417}{4194304} a^{5} - \frac{852523}{4194304} a^{4} + \frac{4907}{65536} a^{3} - \frac{456979}{1048576} a^{2} - \frac{69045}{262144} a - \frac{130753}{262144}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 37316919733400000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 47029248 |
| The 228 conjugacy class representatives for t21n147 are not computed |
| Character table for t21n147 is not computed |
Intermediate fields
| 7.7.670188544.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.14.0.1}{14} }{,}\,{\href{/LocalNumberField/5.7.0.1}{7} }$ | $21$ | R | ${\href{/LocalNumberField/13.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/17.14.0.1}{14} }{,}\,{\href{/LocalNumberField/17.7.0.1}{7} }$ | ${\href{/LocalNumberField/19.9.0.1}{9} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }$ | R | ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/41.14.0.1}{14} }{,}\,{\href{/LocalNumberField/41.7.0.1}{7} }$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/47.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.4.8.8 | $x^{4} + 4 x + 2$ | $4$ | $1$ | $8$ | $S_4$ | $[8/3, 8/3]_{3}^{2}$ | |
| 2.6.11.7 | $x^{6} + 2 x^{2} + 6$ | $6$ | $1$ | $11$ | $S_4\times C_2$ | $[8/3, 8/3, 3]_{3}^{2}$ | |
| 2.8.25.28 | $x^{8} + 28 x^{6} + 72$ | $8$ | $1$ | $25$ | $C_2 \wr S_4$ | $[8/3, 8/3, 3, 23/6, 23/6, 17/4]_{3}^{2}$ | |
| 3 | Data not computed | ||||||
| $11$ | 11.3.2.1 | $x^{3} - 11$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 11.9.0.1 | $x^{9} - x + 3$ | $1$ | $9$ | $0$ | $C_9$ | $[\ ]^{9}$ | |
| 11.9.0.1 | $x^{9} - x + 3$ | $1$ | $9$ | $0$ | $C_9$ | $[\ ]^{9}$ | |
| $29$ | 29.3.2.1 | $x^{3} - 29$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 29.6.0.1 | $x^{6} - x + 3$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 29.12.0.1 | $x^{12} - x + 15$ | $1$ | $12$ | $0$ | $C_{12}$ | $[\ ]^{12}$ | |
| 809 | Data not computed | ||||||