Normalized defining polynomial
\( x^{21} + 12 x^{19} - 60 x^{18} - 288 x^{17} - 840 x^{16} - 3726 x^{15} + 594 x^{14} + 366 x^{13} + 17192 x^{12} + 75906 x^{11} - 86412 x^{10} + 32126 x^{9} + 10296 x^{8} - 447726 x^{7} + 531832 x^{6} - 214920 x^{5} + 43176 x^{4} - 2352 x^{3} - 5760 x^{2} + 1440 x + 160 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[11, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-139466544682494688544924733946513396963737600=-\,2^{26}\cdot 3^{21}\cdot 5^{2}\cdot 73^{12}\cdot 347\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $126.51$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 73, 347$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{2} a^{14}$, $\frac{1}{2} a^{15}$, $\frac{1}{4} a^{16} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{17} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{8} a^{18} + \frac{1}{4} a^{12} + \frac{1}{4} a^{11} - \frac{1}{4} a^{10} + \frac{1}{4} a^{8} - \frac{1}{2} a^{7} - \frac{1}{4} a^{6} + \frac{1}{4} a^{4}$, $\frac{1}{8} a^{19} + \frac{1}{4} a^{13} + \frac{1}{4} a^{12} - \frac{1}{4} a^{11} + \frac{1}{4} a^{9} - \frac{1}{2} a^{8} - \frac{1}{4} a^{7} + \frac{1}{4} a^{5}$, $\frac{1}{789983663857257714367236340525557554805933492041488} a^{20} - \frac{9924357977090824564806015857253731554341799258377}{394991831928628857183618170262778777402966746020744} a^{19} - \frac{23295621896616958358212417687100556178858309287789}{394991831928628857183618170262778777402966746020744} a^{18} + \frac{4805281794509278180240212051399265549251305878945}{49373978991078607147952271282847347175370843252593} a^{17} - \frac{1404262498027357707238118326769768970962383669767}{197495915964314428591809085131389388701483373010372} a^{16} - \frac{8999480717314868964891463080985550962387726363844}{49373978991078607147952271282847347175370843252593} a^{15} + \frac{27535003277903261861955727691369254600747701424365}{394991831928628857183618170262778777402966746020744} a^{14} + \frac{150609401415231933429548539629673307589235228511327}{394991831928628857183618170262778777402966746020744} a^{13} + \frac{187119165889900983752265429761224853097233321328823}{394991831928628857183618170262778777402966746020744} a^{12} - \frac{33313779333687379582918833163631397803065902106169}{98747957982157214295904542565694694350741686505186} a^{11} - \frac{139488590972513156988343733127464896995817287554905}{394991831928628857183618170262778777402966746020744} a^{10} - \frac{6092417188933216597871923876523371154715200014491}{49373978991078607147952271282847347175370843252593} a^{9} + \frac{60041734739790784817016737054867923488303305396921}{394991831928628857183618170262778777402966746020744} a^{8} + \frac{1808249456244442906285275276243446835433127300899}{197495915964314428591809085131389388701483373010372} a^{7} - \frac{89254454466755204063745470132926202843154199535869}{394991831928628857183618170262778777402966746020744} a^{6} - \frac{68601598320393610304100389096778178456504727565761}{197495915964314428591809085131389388701483373010372} a^{5} - \frac{36708549443599108334150936807224109990935997968147}{197495915964314428591809085131389388701483373010372} a^{4} + \frac{9665514739323161291071916803023390121962545554616}{49373978991078607147952271282847347175370843252593} a^{3} + \frac{19316790737762929221345048786833295022872192290155}{98747957982157214295904542565694694350741686505186} a^{2} - \frac{8367245509469734047228427574761961875596400567770}{49373978991078607147952271282847347175370843252593} a + \frac{8949147493471234956646049360675334006939313360572}{49373978991078607147952271282847347175370843252593}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1482236780840000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 5878656 |
| The 183 conjugacy class representatives for t21n137 are not computed |
| Character table for t21n137 is not computed |
Intermediate fields
| 7.7.1817487424.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | $21$ | ${\href{/LocalNumberField/11.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/13.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }$ | $21$ | ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.9.0.1}{9} }{,}\,{\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | ${\href{/LocalNumberField/43.14.0.1}{14} }{,}\,{\href{/LocalNumberField/43.7.0.1}{7} }$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{5}$ | ${\href{/LocalNumberField/59.9.0.1}{9} }{,}\,{\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.7.6.1 | $x^{7} - 2$ | $7$ | $1$ | $6$ | $C_7:C_3$ | $[\ ]_{7}^{3}$ |
| 2.14.20.3 | $x^{14} + 2 x^{12} + 2 x^{11} + 2 x^{10} + 2 x^{9} + 2 x^{8} + 2 x^{7} + 2 x^{2} + 2$ | $14$ | $1$ | $20$ | 14T44 | $[8/7, 8/7, 8/7, 12/7, 12/7, 12/7, 2]_{7}^{3}$ | |
| 3 | Data not computed | ||||||
| $5$ | 5.3.2.1 | $x^{3} - 5$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 5.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 5.6.0.1 | $x^{6} - x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 5.9.0.1 | $x^{9} + x^{2} - 2 x + 2$ | $1$ | $9$ | $0$ | $C_9$ | $[\ ]^{9}$ | |
| 73 | Data not computed | ||||||
| 347 | Data not computed | ||||||