Normalized defining polynomial
\( x^{21} - 7 x^{20} + 7 x^{19} + 91 x^{18} - 343 x^{17} - 35 x^{16} + 2793 x^{15} - 5271 x^{14} - 6174 x^{13} + 36862 x^{12} - 49252 x^{11} - 16100 x^{10} + 47152 x^{9} + 564704 x^{8} - 1702904 x^{7} + 1927968 x^{6} - 1988448 x^{5} + 2003568 x^{4} - 677040 x^{3} + 1010352 x^{2} - 1193808 x + 348528 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[1, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(96191904229042724857909956685420452170151493632=2^{33}\cdot 3^{19}\cdot 7^{21}\cdot 29^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $172.70$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{7}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{5}$, $\frac{1}{12} a^{14} + \frac{1}{12} a^{13} - \frac{1}{4} a^{12} - \frac{1}{12} a^{11} - \frac{1}{12} a^{10} - \frac{1}{4} a^{9} + \frac{1}{12} a^{8} + \frac{1}{12} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4}$, $\frac{1}{12} a^{15} + \frac{1}{6} a^{13} + \frac{1}{6} a^{12} - \frac{1}{6} a^{10} - \frac{1}{6} a^{9} - \frac{1}{12} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4}$, $\frac{1}{12} a^{16} - \frac{1}{4} a^{8} + \frac{1}{3} a^{7} - \frac{1}{2} a^{4}$, $\frac{1}{24} a^{17} - \frac{1}{24} a^{16} - \frac{1}{24} a^{15} - \frac{1}{24} a^{14} - \frac{1}{8} a^{13} + \frac{1}{24} a^{12} + \frac{1}{24} a^{11} - \frac{1}{8} a^{10} + \frac{1}{12} a^{9} + \frac{1}{3} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{24} a^{18} - \frac{1}{4} a^{13} - \frac{1}{4} a^{12} - \frac{1}{4} a^{11} + \frac{1}{8} a^{10} - \frac{1}{12} a^{9} - \frac{1}{4} a^{8} + \frac{1}{4} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{72} a^{19} - \frac{1}{36} a^{16} + \frac{1}{6} a^{13} + \frac{1}{6} a^{12} - \frac{1}{24} a^{11} - \frac{1}{9} a^{10} + \frac{1}{12} a^{8} + \frac{11}{36} a^{7} + \frac{1}{3} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{3} a^{3} - \frac{1}{3}$, $\frac{1}{26245960113453095159635953535287415089103475148326702472} a^{20} + \frac{1061923277999976666211695614655403322428113322065253}{224324445414129018458426953293054829821397223489971816} a^{19} - \frac{13029027561180194118637665502403321606628730930921369}{4374326685575515859939325589214569181517245858054450412} a^{18} - \frac{20086260784250928413833022346590137793707518018983195}{26245960113453095159635953535287415089103475148326702472} a^{17} - \frac{18788627006041137061004442458451582127964180211270971}{672973336242387055375280859879164489464191670469915448} a^{16} + \frac{213588023001589131795867337882785239343065025698009737}{8748653371151031719878651178429138363034491716108900824} a^{15} - \frac{7874524000400398117604514718695967115319392433594795}{224324445414129018458426953293054829821397223489971816} a^{14} + \frac{1962124295884225453186415063181756213196796207530490717}{8748653371151031719878651178429138363034491716108900824} a^{13} - \frac{266055783849141033750582321933250054315343335942567066}{1093581671393878964984831397303642295379311464513612603} a^{12} - \frac{666220250751449164375317964446302638766215529835149041}{3280745014181636894954494191910926886137934393540837809} a^{11} - \frac{1140616475918541140473862564834586389159451528467125141}{8748653371151031719878651178429138363034491716108900824} a^{10} + \frac{17680035020363672101018853677910104881761925626797142}{1093581671393878964984831397303642295379311464513612603} a^{9} - \frac{42380781637342441068091474942833251067003480086734891}{252365001090895145765730322454686683549071876426218293} a^{8} + \frac{13294471071671628914291441246824651960179103353090403}{37709712806685481551201082665642837771700395328055607} a^{7} + \frac{19522894643699897144152801673710187832599133719758079}{729054447595919309989887598202428196919540976342408402} a^{6} + \frac{300606550380916668514809326026550104230205774149192865}{729054447595919309989887598202428196919540976342408402} a^{5} + \frac{433822569450967629553503332743452333308150334635934092}{1093581671393878964984831397303642295379311464513612603} a^{4} - \frac{14596220254746059225562395907352552914186483079685279}{56081111353532254614606738323263707455349305872492954} a^{3} + \frac{4545354044873457419988133152570810362735179756427913}{28040555676766127307303369161631853727674652936246477} a^{2} + \frac{465534840182602015523695827317010009029502821096855390}{1093581671393878964984831397303642295379311464513612603} a - \frac{42046828225196397338403706184395262644404702311413061}{364527223797959654994943799101214098459770488171204201}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 9623787853487828.0 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$S_3\times F_7$ (as 21T15):
| A solvable group of order 252 |
| The 21 conjugacy class representatives for $S_3\times F_7$ |
| Character table for $S_3\times F_7$ is not computed |
Intermediate fields
| 3.1.696.1, 7.1.38423222208.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{10}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | R | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }$ | $21$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.7.6.1 | $x^{7} - 2$ | $7$ | $1$ | $6$ | $C_7:C_3$ | $[\ ]_{7}^{3}$ |
| 2.14.27.213 | $x^{14} + 2 x^{12} + 4 x^{11} - 2 x^{10} + 2 x^{8} + 4 x^{6} + 4 x^{5} + 4 x^{2} - 2$ | $14$ | $1$ | $27$ | $(C_7:C_3) \times C_2$ | $[3]_{7}^{3}$ | |
| $3$ | 3.7.6.1 | $x^{7} - 3$ | $7$ | $1$ | $6$ | $F_7$ | $[\ ]_{7}^{6}$ |
| 3.14.13.2 | $x^{14} + 3$ | $14$ | $1$ | $13$ | $F_7 \times C_2$ | $[\ ]_{14}^{6}$ | |
| 7 | Data not computed | ||||||
| $29$ | $\Q_{29}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{29}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{29}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{29}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{29}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{29}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{29}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 29.2.1.1 | $x^{2} - 29$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 29.2.1.1 | $x^{2} - 29$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 29.2.1.1 | $x^{2} - 29$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 29.2.1.1 | $x^{2} - 29$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 29.2.1.1 | $x^{2} - 29$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 29.2.1.1 | $x^{2} - 29$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 29.2.1.1 | $x^{2} - 29$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |