Normalized defining polynomial
\( x^{21} - 3 x^{19} - 2 x^{18} - 9 x^{17} - 12 x^{16} + 23 x^{15} + 54 x^{14} - 45 x^{13} - 208 x^{12} - 459 x^{11} - 906 x^{10} + 362 x^{9} + 5112 x^{8} + 11667 x^{7} + 18814 x^{6} + 24732 x^{5} + 23832 x^{4} + 15248 x^{3} + 6048 x^{2} + 1344 x + 128 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[1, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(7857627321843320792892969664512=2^{14}\cdot 3^{21}\cdot 71^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $29.59$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 71$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{8} a^{15} - \frac{1}{2} a^{14} + \frac{1}{8} a^{13} + \frac{1}{4} a^{12} + \frac{3}{8} a^{11} + \frac{3}{8} a^{9} + \frac{1}{4} a^{8} - \frac{1}{8} a^{7} - \frac{1}{2} a^{6} + \frac{1}{8} a^{5} + \frac{1}{4} a^{4} - \frac{1}{4} a^{3} + \frac{3}{8} a + \frac{1}{4}$, $\frac{1}{64} a^{16} + \frac{1}{32} a^{15} + \frac{25}{64} a^{14} - \frac{1}{4} a^{13} - \frac{1}{64} a^{12} + \frac{1}{32} a^{11} - \frac{13}{64} a^{10} + \frac{7}{16} a^{9} + \frac{3}{64} a^{8} + \frac{3}{32} a^{7} + \frac{25}{64} a^{6} + \frac{1}{8} a^{5} + \frac{1}{32} a^{4} + \frac{3}{16} a^{3} + \frac{11}{64} a^{2} - \frac{3}{16} a - \frac{5}{16}$, $\frac{1}{512} a^{17} + \frac{21}{512} a^{15} - \frac{33}{256} a^{14} + \frac{31}{512} a^{13} + \frac{33}{128} a^{12} - \frac{145}{512} a^{11} + \frac{59}{256} a^{10} - \frac{245}{512} a^{9} - \frac{3}{8} a^{8} + \frac{141}{512} a^{7} - \frac{21}{256} a^{6} + \frac{89}{256} a^{5} + \frac{25}{64} a^{4} - \frac{205}{512} a^{3} - \frac{17}{256} a^{2} + \frac{49}{128} a + \frac{21}{64}$, $\frac{1}{4096} a^{18} - \frac{1}{2048} a^{17} + \frac{21}{4096} a^{16} - \frac{27}{1024} a^{15} + \frac{675}{4096} a^{14} + \frac{35}{2048} a^{13} - \frac{409}{4096} a^{12} - \frac{205}{512} a^{11} + \frac{1567}{4096} a^{10} - \frac{875}{2048} a^{9} + \frac{13}{4096} a^{8} + \frac{47}{1024} a^{7} + \frac{643}{2048} a^{6} + \frac{473}{1024} a^{5} + \frac{419}{4096} a^{4} + \frac{47}{512} a^{3} - \frac{95}{512} a^{2} - \frac{55}{128} a - \frac{85}{256}$, $\frac{1}{32768} a^{19} - \frac{1}{8192} a^{18} + \frac{25}{32768} a^{17} - \frac{75}{16384} a^{16} + \frac{891}{32768} a^{15} - \frac{21}{128} a^{14} - \frac{549}{32768} a^{13} + \frac{1637}{16384} a^{12} + \frac{13039}{32768} a^{11} - \frac{3269}{8192} a^{10} + \frac{11705}{32768} a^{9} - \frac{4015}{16384} a^{8} + \frac{4551}{16384} a^{7} + \frac{427}{4096} a^{6} + \frac{8923}{32768} a^{5} - \frac{4327}{16384} a^{4} + \frac{323}{4096} a^{3} + \frac{497}{2048} a^{2} + \frac{903}{2048} a + \frac{341}{1024}$, $\frac{1}{262144} a^{20} + \frac{1}{131072} a^{19} + \frac{1}{262144} a^{18} - \frac{9}{262144} a^{16} - \frac{15}{131072} a^{15} - \frac{37}{262144} a^{14} - \frac{5}{65536} a^{13} - \frac{85}{262144} a^{12} - \frac{189}{131072} a^{11} - \frac{1215}{262144} a^{10} - \frac{417}{32768} a^{9} - \frac{3155}{131072} a^{8} - \frac{1877}{65536} a^{7} - \frac{3349}{262144} a^{6} + \frac{3029}{65536} a^{5} + \frac{12241}{65536} a^{4} + \frac{3805}{8192} a^{3} - \frac{211}{16384} a^{2} - \frac{11}{4096} a - \frac{1}{4096}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6510880.80508 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 3919104 |
| The 288 conjugacy class representatives for t21n131 are not computed |
| Character table for t21n131 is not computed |
Intermediate fields
| 7.1.357911.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.14.0.1}{14} }{,}\,{\href{/LocalNumberField/5.7.0.1}{7} }$ | ${\href{/LocalNumberField/7.6.0.1}{6} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | $21$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }$ | ${\href{/LocalNumberField/29.14.0.1}{14} }{,}\,{\href{/LocalNumberField/29.7.0.1}{7} }$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | $21$ | ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | ${\href{/LocalNumberField/43.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.7.0.1 | $x^{7} - x + 1$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ |
| 2.14.14.28 | $x^{14} + x^{12} + 2 x^{11} + 2 x^{9} + 2 x^{8} + 2 x^{5} + 2 x^{4} + 2 x - 1$ | $2$ | $7$ | $14$ | $C_2 \wr C_7$ | $[2, 2, 2, 2, 2, 2]^{14}$ | |
| 3 | Data not computed | ||||||
| $71$ | $\Q_{71}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 71.2.1.2 | $x^{2} + 142$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 71.2.1.2 | $x^{2} + 142$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 71.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 71.2.1.2 | $x^{2} + 142$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 71.2.1.2 | $x^{2} + 142$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 71.4.2.1 | $x^{4} + 1491 x^{2} + 609961$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 71.6.3.2 | $x^{6} - 5041 x^{2} + 715822$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |