Normalized defining polynomial
\( x^{21} - 7 x^{20} + 217 x^{19} - 1039 x^{18} + 16265 x^{17} - 67195 x^{16} + 673467 x^{15} - 3262297 x^{14} + 21564242 x^{13} - 95264182 x^{12} + 490225342 x^{11} - 1802769584 x^{10} + 6308769536 x^{9} - 10492301162 x^{8} + 9691332318 x^{7} + 120179963920 x^{6} - 363434677664 x^{5} + 861500572256 x^{4} + 287175699584 x^{3} - 2226072324992 x^{2} + 4588789081088 x - 3290030542336 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[1, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(7768946935337343279213431536688153817536377176369532239872=2^{18}\cdot 7^{17}\cdot 17^{19}\cdot 127^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $571.06$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 17, 127$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{13} - \frac{1}{2} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7}$, $\frac{1}{4} a^{15} - \frac{1}{4} a^{14} - \frac{1}{4} a^{13} - \frac{1}{4} a^{12} - \frac{1}{4} a^{11} - \frac{1}{4} a^{10} + \frac{1}{4} a^{9} + \frac{1}{4} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{136} a^{16} + \frac{9}{136} a^{15} - \frac{27}{136} a^{14} + \frac{5}{136} a^{13} + \frac{45}{136} a^{12} + \frac{1}{8} a^{11} + \frac{47}{136} a^{10} + \frac{27}{136} a^{9} + \frac{3}{68} a^{8} - \frac{9}{68} a^{7} - \frac{1}{4} a^{6} + \frac{3}{17} a^{5} - \frac{6}{17} a^{4} + \frac{3}{68} a^{3} - \frac{33}{68} a^{2} + \frac{8}{17} a - \frac{4}{17}$, $\frac{1}{272} a^{17} - \frac{1}{272} a^{16} + \frac{19}{272} a^{15} + \frac{3}{272} a^{14} - \frac{5}{272} a^{13} - \frac{25}{272} a^{12} - \frac{123}{272} a^{11} + \frac{101}{272} a^{10} - \frac{8}{17} a^{9} + \frac{29}{136} a^{8} + \frac{5}{136} a^{7} + \frac{23}{68} a^{6} + \frac{15}{34} a^{5} - \frac{29}{136} a^{4} - \frac{63}{136} a^{3} + \frac{11}{68} a^{2} + \frac{1}{34} a + \frac{3}{17}$, $\frac{1}{120224} a^{18} - \frac{45}{120224} a^{17} + \frac{267}{120224} a^{16} + \frac{371}{7072} a^{15} - \frac{15845}{120224} a^{14} + \frac{37799}{120224} a^{13} + \frac{33685}{120224} a^{12} + \frac{8573}{120224} a^{11} + \frac{47}{578} a^{10} + \frac{18451}{60112} a^{9} - \frac{28063}{60112} a^{8} + \frac{7903}{30056} a^{7} + \frac{3469}{7514} a^{6} + \frac{87}{272} a^{5} - \frac{1455}{4624} a^{4} + \frac{12379}{30056} a^{3} + \frac{925}{7514} a^{2} + \frac{492}{3757} a - \frac{1120}{3757}$, $\frac{1}{240448} a^{19} - \frac{1}{240448} a^{18} + \frac{55}{240448} a^{17} + \frac{375}{240448} a^{16} - \frac{28289}{240448} a^{15} - \frac{44117}{240448} a^{14} - \frac{14583}{240448} a^{13} - \frac{2999}{14144} a^{12} - \frac{601}{3536} a^{11} - \frac{21069}{120224} a^{10} + \frac{4977}{120224} a^{9} - \frac{21623}{60112} a^{8} + \frac{81}{289} a^{7} - \frac{30877}{120224} a^{6} - \frac{3019}{9248} a^{5} - \frac{28051}{60112} a^{4} + \frac{2247}{7514} a^{3} - \frac{31}{884} a^{2} - \frac{1670}{3757} a - \frac{330}{3757}$, $\frac{1}{2346086780760625824484709679937400866864083564982653510877127777075002985985019585055452102738996867571401251968} a^{20} - \frac{1058303430682720214323160241822429454659117730194202705933522845610029714810442967622252669097431510474645}{2346086780760625824484709679937400866864083564982653510877127777075002985985019585055452102738996867571401251968} a^{19} - \frac{8893444783014182730675175987131612355270560326043912875792072713060090052169366152171100055177136138892321}{2346086780760625824484709679937400866864083564982653510877127777075002985985019585055452102738996867571401251968} a^{18} + \frac{3108707320976784794780389065955182529646050706997345797423072038227599804517839720983380166245947859654661231}{2346086780760625824484709679937400866864083564982653510877127777075002985985019585055452102738996867571401251968} a^{17} + \frac{3591006073883438236320444024354268389817793577442986810802084150794885281723900172168639353887044757976260743}{2346086780760625824484709679937400866864083564982653510877127777075002985985019585055452102738996867571401251968} a^{16} + \frac{3312613483879893648515957154622996235531809557326398182976314748396559548268589313610163811780676195002172595}{2346086780760625824484709679937400866864083564982653510877127777075002985985019585055452102738996867571401251968} a^{15} - \frac{199552630962072993098674744857422537532024079149355752044339270900903999797564261564865914327901127035349938815}{2346086780760625824484709679937400866864083564982653510877127777075002985985019585055452102738996867571401251968} a^{14} - \frac{218867817238567761052602855200922039559871965850506158606968761209931730324550048173463740387582998682645416151}{2346086780760625824484709679937400866864083564982653510877127777075002985985019585055452102738996867571401251968} a^{13} - \frac{107228713832973900353423233375849201813547627093960453054665657044980372380934894942181556087229054163226459}{618041828440628510138226996822286845854605786349487226258463587216807952050848152016715517054530260161064608} a^{12} - \frac{403608062537961698154066786954553337415533905233158579147963857575969283028263826578300550710866047513760675871}{1173043390380312912242354839968700433432041782491326755438563888537501492992509792527726051369498433785700625984} a^{11} - \frac{576879405456849998122471501833743948553465423872218009068252296311433506104699634358085458776480710079678193063}{1173043390380312912242354839968700433432041782491326755438563888537501492992509792527726051369498433785700625984} a^{10} + \frac{4805725057760234285378529126150527186438622970777500305038324175284378565325322203118147785543025180989810073}{45117053476165881240090570768026939747386222403512567516867841866826980499711915097220232744980708991757716384} a^{9} - \frac{105939243981885363217991675777619050258287230035889610513252894850133133139470627626274254142891095378848114911}{293260847595078228060588709992175108358010445622831688859640972134375373248127448131931512842374608446425156496} a^{8} - \frac{103078652944042910957488265645334485997583906500349748736794767548534217351036946270452437945088758923450634205}{1173043390380312912242354839968700433432041782491326755438563888537501492992509792527726051369498433785700625984} a^{7} + \frac{490644091592125319356635965102365761983743916318380105500479403090113597217132520191397908606324905326106567397}{1173043390380312912242354839968700433432041782491326755438563888537501492992509792527726051369498433785700625984} a^{6} - \frac{33126751105789651987399937763767562957369906381574935826843093135473211667349891676828572997004516168494476111}{586521695190156456121177419984350216716020891245663377719281944268750746496254896263863025684749216892850312992} a^{5} + \frac{119330170258940565152983017591560913034207492124980831371521662974889359033055351672206089976913180849994896953}{293260847595078228060588709992175108358010445622831688859640972134375373248127448131931512842374608446425156496} a^{4} + \frac{16443125351206053245224229268202232049387984167149385135895204090106563722260858368877451625056966089489633761}{146630423797539114030294354996087554179005222811415844429820486067187686624063724065965756421187304223212578248} a^{3} + \frac{15962830439849606458596560719213314911065238895048374812172565655127847770253945367084487747908626544543117651}{73315211898769557015147177498043777089502611405707922214910243033593843312031862032982878210593652111606289124} a^{2} - \frac{6676987725888467050855520460195039738521177722617263121423340221816154699529944679370985763577466859984467143}{36657605949384778507573588749021888544751305702853961107455121516796921656015931016491439105296826055803144562} a + \frac{1148395479174733326363451889418386652407546550122267210942810264724517649271587015742829004497697106645932765}{18328802974692389253786794374510944272375652851426980553727560758398460828007965508245719552648413027901572281}$
Class group and class number
Not computed
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$S_3\times F_7$ (as 21T15):
| A solvable group of order 252 |
| The 21 conjugacy class representatives for $S_3\times F_7$ |
| Character table for $S_3\times F_7$ is not computed |
Intermediate fields
| 3.1.105791.2, 7.1.25963527819712.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }$ | R | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{7}$ | $21$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{10}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | ${\href{/LocalNumberField/43.14.0.1}{14} }{,}\,{\href{/LocalNumberField/43.7.0.1}{7} }$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.7.6.1 | $x^{7} - 2$ | $7$ | $1$ | $6$ | $C_7:C_3$ | $[\ ]_{7}^{3}$ |
| 2.7.6.1 | $x^{7} - 2$ | $7$ | $1$ | $6$ | $C_7:C_3$ | $[\ ]_{7}^{3}$ | |
| 2.7.6.1 | $x^{7} - 2$ | $7$ | $1$ | $6$ | $C_7:C_3$ | $[\ ]_{7}^{3}$ | |
| 7 | Data not computed | ||||||
| $17$ | 17.7.6.1 | $x^{7} - 17$ | $7$ | $1$ | $6$ | $F_7$ | $[\ ]_{7}^{6}$ |
| 17.14.13.1 | $x^{14} - 17$ | $14$ | $1$ | $13$ | $F_7 \times C_2$ | $[\ ]_{14}^{6}$ | |
| $127$ | $\Q_{127}$ | $x + 9$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{127}$ | $x + 9$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{127}$ | $x + 9$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{127}$ | $x + 9$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{127}$ | $x + 9$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{127}$ | $x + 9$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{127}$ | $x + 9$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 127.2.1.2 | $x^{2} + 1143$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 127.2.1.2 | $x^{2} + 1143$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 127.2.1.2 | $x^{2} + 1143$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 127.2.1.2 | $x^{2} + 1143$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 127.2.1.2 | $x^{2} + 1143$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 127.2.1.2 | $x^{2} + 1143$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 127.2.1.2 | $x^{2} + 1143$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |