Normalized defining polynomial
\( x^{21} - 7 x^{20} + 63 x^{19} - 273 x^{18} + 1337 x^{17} - 3927 x^{16} + 13041 x^{15} - 25267 x^{14} + 60690 x^{13} - 91518 x^{12} + 119084 x^{11} + 634284 x^{10} - 845936 x^{9} + 3003280 x^{8} - 9539064 x^{7} + 22197616 x^{6} - 45490368 x^{5} + 88338768 x^{4} - 71119664 x^{3} + 42161840 x^{2} - 83922384 x + 83379248 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[1, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(7133386677177057321844488601370585790057054877370150192469245952=2^{33}\cdot 3^{18}\cdot 7^{21}\cdot 11^{19}\cdot 13^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $1098.08$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 11, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{7}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{5}$, $\frac{1}{44} a^{14} + \frac{1}{44} a^{13} + \frac{9}{44} a^{12} + \frac{7}{44} a^{11} - \frac{5}{44} a^{10} + \frac{9}{44} a^{9} + \frac{1}{44} a^{8} - \frac{3}{44} a^{7} + \frac{3}{11} a^{6} - \frac{1}{22} a^{5} + \frac{3}{22} a^{4} - \frac{1}{11} a^{3} + \frac{5}{11} a^{2} + \frac{3}{11} a + \frac{3}{11}$, $\frac{1}{44} a^{15} + \frac{2}{11} a^{13} - \frac{1}{22} a^{12} + \frac{5}{22} a^{11} - \frac{2}{11} a^{10} - \frac{2}{11} a^{9} - \frac{1}{11} a^{8} - \frac{7}{44} a^{7} + \frac{2}{11} a^{6} + \frac{2}{11} a^{5} - \frac{5}{22} a^{4} - \frac{5}{11} a^{3} - \frac{2}{11} a^{2} - \frac{3}{11}$, $\frac{1}{44} a^{16} - \frac{5}{22} a^{13} + \frac{1}{11} a^{12} + \frac{1}{22} a^{11} + \frac{5}{22} a^{10} - \frac{5}{22} a^{9} + \frac{7}{44} a^{8} + \frac{5}{22} a^{7} - \frac{1}{2} a^{6} - \frac{4}{11} a^{5} + \frac{5}{11} a^{4} - \frac{5}{11} a^{3} + \frac{4}{11} a^{2} - \frac{5}{11} a - \frac{2}{11}$, $\frac{1}{88} a^{17} - \frac{1}{88} a^{16} - \frac{1}{88} a^{15} - \frac{1}{88} a^{14} - \frac{7}{88} a^{13} - \frac{7}{88} a^{12} + \frac{17}{88} a^{11} + \frac{9}{88} a^{10} + \frac{9}{44} a^{9} + \frac{2}{11} a^{8} - \frac{1}{11} a^{7} + \frac{5}{11} a^{6} + \frac{4}{11} a^{5} - \frac{5}{22} a^{4} + \frac{5}{22} a^{3} - \frac{3}{11} a^{2} + \frac{4}{11} a + \frac{5}{11}$, $\frac{1}{88} a^{18} - \frac{5}{44} a^{13} - \frac{1}{44} a^{12} + \frac{9}{44} a^{11} - \frac{9}{88} a^{10} - \frac{9}{44} a^{9} - \frac{1}{4} a^{8} + \frac{7}{44} a^{7} - \frac{9}{22} a^{6} - \frac{5}{22} a^{5} + \frac{3}{11} a^{4} - \frac{7}{22} a^{3} + \frac{1}{11} a^{2} + \frac{5}{11} a + \frac{1}{11}$, $\frac{1}{968} a^{19} + \frac{1}{242} a^{17} + \frac{1}{121} a^{16} + \frac{1}{484} a^{15} + \frac{1}{242} a^{14} - \frac{16}{121} a^{13} + \frac{7}{121} a^{12} + \frac{225}{968} a^{11} - \frac{2}{11} a^{9} - \frac{30}{121} a^{8} + \frac{4}{11} a^{7} + \frac{57}{242} a^{6} + \frac{103}{242} a^{5} + \frac{89}{242} a^{4} + \frac{1}{121} a^{3} - \frac{32}{121} a^{2} + \frac{58}{121} a + \frac{15}{121}$, $\frac{1}{19737654882299073654788400429216024718221280561105259666846946632} a^{20} - \frac{406212401167649102468468052864806422938760603610099773136945}{9868827441149536827394200214608012359110640280552629833423473316} a^{19} + \frac{53733458038608308543306559413163768338417957112720095838325381}{9868827441149536827394200214608012359110640280552629833423473316} a^{18} - \frac{31293658211005416672351322746521911248468732172084922133312985}{19737654882299073654788400429216024718221280561105259666846946632} a^{17} + \frac{210933284579120158488652228240483470970960821997776859086321069}{19737654882299073654788400429216024718221280561105259666846946632} a^{16} + \frac{207438908455395862977203490196518520560853264354781444206389741}{19737654882299073654788400429216024718221280561105259666846946632} a^{15} + \frac{1142724456477176161520865712856233320808976484324173542941221}{1794332262027188514071672766292365883474661869191387242440631512} a^{14} - \frac{297524548483209683287913362113095765088066773694861953669147539}{19737654882299073654788400429216024718221280561105259666846946632} a^{13} - \frac{2143122755354384830606139183673719811394394603451591549840579025}{9868827441149536827394200214608012359110640280552629833423473316} a^{12} + \frac{690668314759609696496944852802114724368378563535769031068053951}{19737654882299073654788400429216024718221280561105259666846946632} a^{11} + \frac{8676990462525263329316335713870284968017945010984379730028181}{1794332262027188514071672766292365883474661869191387242440631512} a^{10} - \frac{274323846630114845308315685513521313802272686831345629697678637}{4934413720574768413697100107304006179555320140276314916711736658} a^{9} + \frac{185894435139812530550256330178665141122575962860107780853928730}{2467206860287384206848550053652003089777660070138157458355868329} a^{8} - \frac{4014928838581870022766957843286086083573054663342382390440693093}{9868827441149536827394200214608012359110640280552629833423473316} a^{7} + \frac{554294993510513817751402334306783861384870782866145010431543426}{2467206860287384206848550053652003089777660070138157458355868329} a^{6} - \frac{560330252002534436924733015839027984702796064755296416993319238}{2467206860287384206848550053652003089777660070138157458355868329} a^{5} - \frac{346657844081721215389599913359509861254659956195166613305552773}{4934413720574768413697100107304006179555320140276314916711736658} a^{4} - \frac{19866997671457356268446714577640823535643083679301611738362673}{40780278682436102592538017415735588260787769754349710055468898} a^{3} - \frac{404995894855782451489474850153206989756694328506766770336147848}{2467206860287384206848550053652003089777660070138157458355868329} a^{2} + \frac{218295719261452345068713716306971993011315229208626603616847690}{2467206860287384206848550053652003089777660070138157458355868329} a + \frac{819440229274405923790339782230296696373713209314214082492868838}{2467206860287384206848550053652003089777660070138157458355868329}$
Class group and class number
Not computed
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$S_3\times F_7$ (as 21T15):
| A solvable group of order 252 |
| The 21 conjugacy class representatives for $S_3\times F_7$ |
| Character table for $S_3\times F_7$ is not computed |
Intermediate fields
| 3.1.1144.1, 7.1.68069081958026688.23 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }$ | R | R | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{7}$ | $21$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }$ | $21$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.7.6.1 | $x^{7} - 2$ | $7$ | $1$ | $6$ | $C_7:C_3$ | $[\ ]_{7}^{3}$ |
| 2.14.27.213 | $x^{14} + 2 x^{12} + 4 x^{11} - 2 x^{10} + 2 x^{8} + 4 x^{6} + 4 x^{5} + 4 x^{2} - 2$ | $14$ | $1$ | $27$ | $(C_7:C_3) \times C_2$ | $[3]_{7}^{3}$ | |
| $3$ | 3.7.6.1 | $x^{7} - 3$ | $7$ | $1$ | $6$ | $F_7$ | $[\ ]_{7}^{6}$ |
| 3.14.12.1 | $x^{14} - 3 x^{7} + 18$ | $7$ | $2$ | $12$ | $F_7$ | $[\ ]_{7}^{6}$ | |
| 7 | Data not computed | ||||||
| $11$ | 11.7.6.1 | $x^{7} - 11$ | $7$ | $1$ | $6$ | $C_7:C_3$ | $[\ ]_{7}^{3}$ |
| 11.14.13.2 | $x^{14} + 33$ | $14$ | $1$ | $13$ | $(C_7:C_3) \times C_2$ | $[\ ]_{14}^{3}$ | |
| $13$ | $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |