Normalized defining polynomial
\( x^{21} + 63 x^{19} - 56 x^{18} + 1610 x^{17} - 2520 x^{16} + 23121 x^{15} - 46272 x^{14} + 210994 x^{13} - 459704 x^{12} + 1276149 x^{11} - 2623516 x^{10} + 5090785 x^{9} - 8563100 x^{8} + 12268682 x^{7} - 15308580 x^{6} + 15211588 x^{5} - 11151728 x^{4} + 5522776 x^{3} - 1800400 x^{2} + 419328 x - 65792 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[1, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(60610990762506365069234820150880000000000=2^{14}\cdot 5^{10}\cdot 7^{35}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $87.50$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{4}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{7} + \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{8} + \frac{1}{4} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{9} + \frac{1}{4} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{24} a^{14} - \frac{1}{8} a^{13} - \frac{1}{8} a^{12} + \frac{1}{12} a^{11} + \frac{5}{24} a^{10} - \frac{5}{24} a^{9} - \frac{1}{8} a^{8} - \frac{5}{24} a^{6} + \frac{11}{24} a^{5} - \frac{1}{24} a^{4} - \frac{1}{4} a^{3} + \frac{5}{12} a^{2} + \frac{1}{6} a + \frac{1}{3}$, $\frac{1}{24} a^{15} - \frac{1}{24} a^{12} - \frac{1}{24} a^{11} - \frac{1}{12} a^{10} - \frac{1}{4} a^{9} - \frac{1}{8} a^{8} - \frac{5}{24} a^{7} - \frac{1}{6} a^{6} + \frac{1}{3} a^{5} + \frac{3}{8} a^{4} - \frac{1}{3} a^{3} + \frac{5}{12} a^{2} - \frac{1}{6} a$, $\frac{1}{24} a^{16} - \frac{1}{24} a^{13} - \frac{1}{24} a^{12} - \frac{1}{12} a^{11} - \frac{1}{4} a^{10} - \frac{1}{8} a^{9} - \frac{5}{24} a^{8} - \frac{1}{6} a^{7} - \frac{1}{6} a^{6} + \frac{3}{8} a^{5} + \frac{1}{6} a^{4} + \frac{5}{12} a^{3} + \frac{1}{3} a^{2}$, $\frac{1}{120} a^{17} + \frac{1}{60} a^{16} - \frac{1}{60} a^{15} - \frac{1}{10} a^{13} + \frac{13}{120} a^{12} + \frac{1}{10} a^{11} - \frac{1}{20} a^{10} - \frac{1}{12} a^{9} - \frac{17}{120} a^{8} - \frac{1}{6} a^{7} + \frac{7}{30} a^{6} + \frac{7}{24} a^{5} - \frac{11}{24} a^{4} + \frac{7}{15} a^{3} + \frac{9}{20} a^{2} - \frac{2}{5} a + \frac{1}{15}$, $\frac{1}{2400} a^{18} - \frac{1}{400} a^{17} - \frac{23}{2400} a^{16} - \frac{7}{1200} a^{15} - \frac{1}{75} a^{14} + \frac{1}{100} a^{13} + \frac{91}{800} a^{12} - \frac{7}{400} a^{11} + \frac{71}{300} a^{10} - \frac{1}{75} a^{9} - \frac{193}{800} a^{8} + \frac{29}{1200} a^{7} + \frac{157}{800} a^{6} + \frac{7}{80} a^{5} - \frac{133}{300} a^{4} - \frac{21}{100} a^{3} - \frac{1}{40} a^{2} + \frac{13}{100} a + \frac{23}{75}$, $\frac{1}{14400} a^{19} - \frac{59}{14400} a^{17} + \frac{37}{3600} a^{16} - \frac{3}{200} a^{15} - \frac{17}{3600} a^{14} + \frac{113}{1600} a^{13} + \frac{31}{900} a^{12} - \frac{37}{450} a^{11} - \frac{31}{3600} a^{10} + \frac{2029}{14400} a^{9} - \frac{779}{3600} a^{8} - \frac{1081}{14400} a^{7} + \frac{367}{1800} a^{6} - \frac{101}{3600} a^{5} - \frac{761}{1800} a^{4} - \frac{271}{3600} a^{3} - \frac{21}{50} a^{2} - \frac{43}{100} a - \frac{106}{225}$, $\frac{1}{240321432604068262773079830502038115590824375040000} a^{20} + \frac{2067858215606282470746661155540058935539434777}{60080358151017065693269957625509528897706093760000} a^{19} - \frac{25399054646752061949107711148795590809882426673}{240321432604068262773079830502038115590824375040000} a^{18} + \frac{34153168337758205592162502421341701992857029493}{12016071630203413138653991525101905779541218752000} a^{17} - \frac{253639784151266967196762747291567737630853741751}{24032143260406826277307983050203811559082437504000} a^{16} + \frac{9379573222970163768679875532810603277070782341}{600803581510170656932699576255095288977060937600} a^{15} - \frac{3548952106394292489027553228620943110840138733679}{240321432604068262773079830502038115590824375040000} a^{14} - \frac{139657758469060362226410508106776200837629042429}{3162124113211424510172103032921554152510847040000} a^{13} + \frac{1560869153699730065858442351992282590059651379681}{120160716302034131386539915251019057795412187520000} a^{12} + \frac{278315949842215596885608473523644069021343432579}{5006696512584755474439163135459127408142174480000} a^{11} + \frac{2125831651478959920838292308882130373099795439739}{16021428840271217518205322033469207706054958336000} a^{10} + \frac{5100041685554220860025053740580175156643789632883}{30040179075508532846634978812754764448853046880000} a^{9} + \frac{13602382153967109668923820282497842949587948408299}{80107144201356087591026610167346038530274791680000} a^{8} - \frac{2355916529624218482092374662418659243392370262903}{30040179075508532846634978812754764448853046880000} a^{7} + \frac{97074115404418373825200182781058683390353869017}{421616548428189934689613737722873887001446272000} a^{6} + \frac{338590470480372249627134022418185044700479977173}{1335119070022601459850443502789100642171246528000} a^{5} + \frac{15706937019659370043543463131917417092069319185077}{60080358151017065693269957625509528897706093760000} a^{4} - \frac{140829462096531672012952612552880857127538678983}{395265514151428063771512879115194269063855880000} a^{3} + \frac{3482815726523118990622678521503596444508809890761}{10013393025169510948878326270918254816284348960000} a^{2} - \frac{7356378261805628575843470396425783920221910429543}{15020089537754266423317489406377382224426523440000} a + \frac{1855487691356609652455919978811492730141905167641}{3755022384438566605829372351594345556106630860000}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 16696091809800 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 588 |
| The 19 conjugacy class representatives for t21n23 |
| Character table for t21n23 |
Intermediate fields
| 3.1.980.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 14 sibling: | data not computed |
| Degree 21 sibling: | data not computed |
| Degree 28 sibling: | data not computed |
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.3.0.1}{3} }^{7}$ | R | R | ${\href{/LocalNumberField/11.14.0.1}{14} }{,}\,{\href{/LocalNumberField/11.7.0.1}{7} }$ | ${\href{/LocalNumberField/13.14.0.1}{14} }{,}\,{\href{/LocalNumberField/13.7.0.1}{7} }$ | ${\href{/LocalNumberField/17.14.0.1}{14} }{,}\,{\href{/LocalNumberField/17.7.0.1}{7} }$ | ${\href{/LocalNumberField/19.14.0.1}{14} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/31.14.0.1}{14} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | ${\href{/LocalNumberField/37.14.0.1}{14} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }$ | ${\href{/LocalNumberField/47.7.0.1}{7} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{7}$ | ${\href{/LocalNumberField/53.14.0.1}{14} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.14.0.1}{14} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 2.2.2.2 | $x^{2} + 2 x - 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ | |
| 2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ | |
| 2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ | |
| $5$ | $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 7 | Data not computed | ||||||