\\ Pari/GP code for working with number field 21.1.569752580450182296234409142462680787211686353567744.1. \\ Some of these functions may take a long time to execute (this depends on the field). \\ Define the number field: K = bnfinit(y^21 - 154*y^19 - 350*y^18 + 9422*y^17 + 38318*y^16 - 232820*y^15 - 1495990*y^14 - 59192*y^13 + 16100140*y^12 + 74605944*y^11 + 291794048*y^10 + 22521464*y^9 - 4000275328*y^8 - 1691077124*y^7 + 11054922536*y^6 - 418374125568*y^5 - 2346556141272*y^4 - 4154662343608*y^3 - 3218488878808*y^2 - 17560545695056*y - 50542023253032, 1) \\ Defining polynomial: K.pol \\ Degree over Q: poldegree(K.pol) \\ Signature: K.sign \\ Discriminant: K.disc \\ Ramified primes: factor(abs(K.disc))[,1]~ \\ Integral basis: K.zk \\ Class group: K.clgp \\ Unit rank: K.fu \\ Generator for roots of unity: K.tu[2] \\ Fundamental units: K.fu \\ Regulator: K.reg \\ Analytic class number formula: \\ self-contained Pari/GP code snippet to compute the analytic class number formula K = bnfinit(x^21 - 154*x^19 - 350*x^18 + 9422*x^17 + 38318*x^16 - 232820*x^15 - 1495990*x^14 - 59192*x^13 + 16100140*x^12 + 74605944*x^11 + 291794048*x^10 + 22521464*x^9 - 4000275328*x^8 - 1691077124*x^7 + 11054922536*x^6 - 418374125568*x^5 - 2346556141272*x^4 - 4154662343608*x^3 - 3218488878808*x^2 - 17560545695056*x - 50542023253032, 1); [polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))] \\ Intermediate fields: L = nfsubfields(K); L[2..length(L)] \\ Galois group: polgalois(K.pol) \\ Frobenius cycle types: \\ to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Pari: p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])