Properties

Label 21.1.569...744.1
Degree $21$
Signature $[1, 10]$
Discriminant $5.698\times 10^{50}$
Root discriminant \(261.18\)
Ramified primes $2,7,31$
Class number $7$ (GRH)
Class group [7] (GRH)
Galois group $C_7^2:S_3$ (as 21T17)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / Pari/GP / SageMath

Normalized defining polynomial

Copy content comment:Define the number field
 
Copy content sage:x = polygen(QQ); K.<a> = NumberField(x^21 - 154*x^19 - 350*x^18 + 9422*x^17 + 38318*x^16 - 232820*x^15 - 1495990*x^14 - 59192*x^13 + 16100140*x^12 + 74605944*x^11 + 291794048*x^10 + 22521464*x^9 - 4000275328*x^8 - 1691077124*x^7 + 11054922536*x^6 - 418374125568*x^5 - 2346556141272*x^4 - 4154662343608*x^3 - 3218488878808*x^2 - 17560545695056*x - 50542023253032)
 
Copy content gp:K = bnfinit(y^21 - 154*y^19 - 350*y^18 + 9422*y^17 + 38318*y^16 - 232820*y^15 - 1495990*y^14 - 59192*y^13 + 16100140*y^12 + 74605944*y^11 + 291794048*y^10 + 22521464*y^9 - 4000275328*y^8 - 1691077124*y^7 + 11054922536*y^6 - 418374125568*y^5 - 2346556141272*y^4 - 4154662343608*y^3 - 3218488878808*y^2 - 17560545695056*y - 50542023253032, 1)
 
Copy content magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^21 - 154*x^19 - 350*x^18 + 9422*x^17 + 38318*x^16 - 232820*x^15 - 1495990*x^14 - 59192*x^13 + 16100140*x^12 + 74605944*x^11 + 291794048*x^10 + 22521464*x^9 - 4000275328*x^8 - 1691077124*x^7 + 11054922536*x^6 - 418374125568*x^5 - 2346556141272*x^4 - 4154662343608*x^3 - 3218488878808*x^2 - 17560545695056*x - 50542023253032);
 
Copy content oscar:Qx, x = polynomial_ring(QQ); K, a = number_field(x^21 - 154*x^19 - 350*x^18 + 9422*x^17 + 38318*x^16 - 232820*x^15 - 1495990*x^14 - 59192*x^13 + 16100140*x^12 + 74605944*x^11 + 291794048*x^10 + 22521464*x^9 - 4000275328*x^8 - 1691077124*x^7 + 11054922536*x^6 - 418374125568*x^5 - 2346556141272*x^4 - 4154662343608*x^3 - 3218488878808*x^2 - 17560545695056*x - 50542023253032)
 

\( x^{21} - 154 x^{19} - 350 x^{18} + 9422 x^{17} + 38318 x^{16} - 232820 x^{15} - 1495990 x^{14} + \cdots - 50542023253032 \) Copy content Toggle raw display

Copy content comment:Defining polynomial
 
Copy content sage:K.defining_polynomial()
 
Copy content gp:K.pol
 
Copy content magma:DefiningPolynomial(K);
 
Copy content oscar:defining_polynomial(K)
 

Invariants

Degree:  $21$
Copy content comment:Degree over Q
 
Copy content sage:K.degree()
 
Copy content gp:poldegree(K.pol)
 
Copy content magma:Degree(K);
 
Copy content oscar:degree(K)
 
Signature:  $[1, 10]$
Copy content comment:Signature
 
Copy content sage:K.signature()
 
Copy content gp:K.sign
 
Copy content magma:Signature(K);
 
Copy content oscar:signature(K)
 
Discriminant:   \(569752580450182296234409142462680787211686353567744\) \(\medspace = 2^{18}\cdot 7^{36}\cdot 31^{10}\) Copy content Toggle raw display
Copy content comment:Discriminant
 
Copy content sage:K.disc()
 
Copy content gp:K.disc
 
Copy content magma:OK := Integers(K); Discriminant(OK);
 
Copy content oscar:OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(261.18\)
Copy content comment:Root discriminant
 
Copy content sage:(K.disc().abs())^(1./K.degree())
 
Copy content gp:abs(K.disc)^(1/poldegree(K.pol))
 
Copy content magma:Abs(Discriminant(OK))^(1/Degree(K));
 
Copy content oscar:OK = ring_of_integers(K); (1.0 * abs(discriminant(OK)))^(1/degree(K))
 
Galois root discriminant:  $2^{6/7}7^{96/49}31^{1/2}\approx 456.46642613478804$
Ramified primes:   \(2\), \(7\), \(31\) Copy content Toggle raw display
Copy content comment:Ramified primes
 
Copy content sage:K.disc().support()
 
Copy content gp:factor(abs(K.disc))[,1]~
 
Copy content magma:PrimeDivisors(Discriminant(OK));
 
Copy content oscar:prime_divisors(discriminant(OK))
 
Discriminant root field:  \(\Q\)
$\Aut(K/\Q)$:   $C_1$
Copy content comment:Autmorphisms
 
Copy content sage:K.automorphisms()
 
Copy content magma:Automorphisms(K);
 
Copy content oscar:automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.
This field has no CM subfields.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2}a^{7}$, $\frac{1}{2}a^{8}$, $\frac{1}{2}a^{9}$, $\frac{1}{2}a^{10}$, $\frac{1}{2}a^{11}$, $\frac{1}{4}a^{12}-\frac{1}{2}a^{5}$, $\frac{1}{4}a^{13}-\frac{1}{2}a^{6}$, $\frac{1}{4}a^{14}$, $\frac{1}{4}a^{15}$, $\frac{1}{4}a^{16}$, $\frac{1}{8}a^{17}-\frac{1}{2}a^{3}$, $\frac{1}{24}a^{18}-\frac{1}{12}a^{16}+\frac{1}{12}a^{15}-\frac{1}{12}a^{14}-\frac{1}{12}a^{13}+\frac{1}{12}a^{12}-\frac{1}{6}a^{11}+\frac{1}{6}a^{9}-\frac{1}{6}a^{8}+\frac{1}{6}a^{7}+\frac{1}{6}a^{6}-\frac{1}{2}a^{5}+\frac{1}{6}a^{4}+\frac{1}{3}a^{2}-\frac{1}{3}a$, $\frac{1}{408}a^{19}+\frac{1}{68}a^{18}+\frac{2}{51}a^{17}-\frac{7}{102}a^{16}-\frac{13}{204}a^{15}-\frac{4}{51}a^{14}+\frac{1}{51}a^{13}+\frac{5}{102}a^{12}+\frac{3}{17}a^{11}-\frac{4}{51}a^{10}+\frac{5}{102}a^{9}-\frac{23}{102}a^{8}+\frac{11}{51}a^{7}+\frac{6}{17}a^{6}+\frac{49}{102}a^{5}-\frac{2}{17}a^{4}+\frac{16}{51}a^{3}+\frac{5}{51}a^{2}+\frac{7}{17}a-\frac{1}{17}$, $\frac{1}{14\cdots 96}a^{20}+\frac{35\cdots 25}{14\cdots 96}a^{19}+\frac{23\cdots 45}{48\cdots 32}a^{18}+\frac{77\cdots 43}{14\cdots 96}a^{17}+\frac{48\cdots 53}{72\cdots 48}a^{16}-\frac{20\cdots 95}{72\cdots 48}a^{15}-\frac{65\cdots 95}{26\cdots 24}a^{14}+\frac{21\cdots 97}{72\cdots 48}a^{13}-\frac{87\cdots 39}{72\cdots 48}a^{12}+\frac{30\cdots 97}{18\cdots 37}a^{11}-\frac{51\cdots 97}{36\cdots 74}a^{10}-\frac{27\cdots 69}{36\cdots 74}a^{9}-\frac{42\cdots 82}{18\cdots 37}a^{8}+\frac{53\cdots 73}{36\cdots 74}a^{7}-\frac{27\cdots 28}{20\cdots 93}a^{6}+\frac{54\cdots 11}{18\cdots 37}a^{5}+\frac{51\cdots 03}{36\cdots 74}a^{4}-\frac{71\cdots 61}{36\cdots 74}a^{3}+\frac{77\cdots 17}{60\cdots 79}a^{2}-\frac{71\cdots 92}{16\cdots 67}a-\frac{23\cdots 93}{11\cdots 29}$ Copy content Toggle raw display

Copy content comment:Integral basis
 
Copy content sage:K.integral_basis()
 
Copy content gp:K.zk
 
Copy content magma:IntegralBasis(K);
 
Copy content oscar:basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

Ideal class group:  $C_{7}$, which has order $7$ (assuming GRH)
Copy content comment:Class group
 
Copy content sage:K.class_group().invariants()
 
Copy content gp:K.clgp
 
Copy content magma:ClassGroup(K);
 
Copy content oscar:class_group(K)
 
Narrow class group:  $C_{7}$, which has order $7$ (assuming GRH)
Copy content comment:Narrow class group
 
Copy content sage:K.narrow_class_group().invariants()
 
Copy content gp:bnfnarrow(K)
 
Copy content magma:NarrowClassGroup(K);
 

Unit group

Copy content comment:Unit group
 
Copy content sage:UK = K.unit_group()
 
Copy content magma:UK, fUK := UnitGroup(K);
 
Copy content oscar:UK, fUK = unit_group(OK)
 
Rank:  $10$
Copy content comment:Unit rank
 
Copy content sage:UK.rank()
 
Copy content gp:K.fu
 
Copy content magma:UnitRank(K);
 
Copy content oscar:rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
Copy content comment:Generator for roots of unity
 
Copy content sage:UK.torsion_generator()
 
Copy content gp:K.tu[2]
 
Copy content magma:K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
Copy content oscar:torsion_units_generator(OK)
 
Fundamental units:   $\frac{26\cdots 65}{46\cdots 54}a^{20}-\frac{45\cdots 29}{18\cdots 16}a^{19}-\frac{72\cdots 73}{92\cdots 08}a^{18}+\frac{24\cdots 69}{18\cdots 16}a^{17}+\frac{44\cdots 99}{92\cdots 08}a^{16}+\frac{12\cdots 27}{92\cdots 08}a^{15}-\frac{32\cdots 29}{23\cdots 77}a^{14}-\frac{61\cdots 17}{23\cdots 77}a^{13}+\frac{51\cdots 91}{46\cdots 54}a^{12}+\frac{21\cdots 27}{46\cdots 54}a^{11}+\frac{10\cdots 17}{46\cdots 54}a^{10}+\frac{15\cdots 08}{23\cdots 77}a^{9}-\frac{67\cdots 94}{23\cdots 77}a^{8}-\frac{53\cdots 63}{46\cdots 54}a^{7}+\frac{88\cdots 60}{23\cdots 77}a^{6}-\frac{41\cdots 09}{46\cdots 54}a^{5}-\frac{45\cdots 94}{23\cdots 77}a^{4}-\frac{23\cdots 61}{46\cdots 54}a^{3}-\frac{58\cdots 04}{23\cdots 77}a^{2}-\frac{17\cdots 51}{23\cdots 77}a-\frac{14\cdots 94}{23\cdots 77}$, $\frac{50\cdots 17}{14\cdots 96}a^{20}+\frac{12\cdots 45}{72\cdots 48}a^{19}-\frac{22\cdots 55}{48\cdots 32}a^{18}-\frac{52\cdots 53}{14\cdots 96}a^{17}+\frac{58\cdots 49}{36\cdots 74}a^{16}+\frac{95\cdots 45}{42\cdots 44}a^{15}+\frac{25\cdots 73}{80\cdots 72}a^{14}-\frac{14\cdots 35}{36\cdots 74}a^{13}-\frac{15\cdots 33}{72\cdots 48}a^{12}-\frac{99\cdots 04}{18\cdots 37}a^{11}-\frac{14\cdots 45}{36\cdots 74}a^{10}+\frac{20\cdots 27}{18\cdots 37}a^{9}+\frac{23\cdots 27}{36\cdots 74}a^{8}+\frac{40\cdots 48}{18\cdots 37}a^{7}+\frac{48\cdots 43}{40\cdots 86}a^{6}+\frac{25\cdots 13}{36\cdots 74}a^{5}+\frac{83\cdots 43}{36\cdots 74}a^{4}+\frac{13\cdots 47}{36\cdots 74}a^{3}+\frac{33\cdots 52}{60\cdots 79}a^{2}+\frac{30\cdots 92}{16\cdots 67}a+\frac{69\cdots 12}{20\cdots 93}$, $\frac{13\cdots 85}{14\cdots 96}a^{20}-\frac{72\cdots 33}{21\cdots 22}a^{19}-\frac{68\cdots 53}{48\cdots 32}a^{18}+\frac{31\cdots 77}{14\cdots 96}a^{17}+\frac{67\cdots 79}{72\cdots 48}a^{16}-\frac{18\cdots 41}{36\cdots 74}a^{15}-\frac{11\cdots 01}{40\cdots 86}a^{14}-\frac{18\cdots 03}{72\cdots 48}a^{13}+\frac{22\cdots 11}{72\cdots 48}a^{12}+\frac{49\cdots 40}{18\cdots 37}a^{11}+\frac{67\cdots 52}{18\cdots 37}a^{10}+\frac{56\cdots 97}{36\cdots 74}a^{9}-\frac{31\cdots 55}{36\cdots 74}a^{8}-\frac{51\cdots 23}{36\cdots 74}a^{7}+\frac{24\cdots 18}{20\cdots 93}a^{6}-\frac{72\cdots 43}{21\cdots 22}a^{5}-\frac{13\cdots 61}{36\cdots 74}a^{4}-\frac{16\cdots 27}{36\cdots 74}a^{3}+\frac{44\cdots 52}{60\cdots 79}a^{2}-\frac{54\cdots 57}{16\cdots 67}a-\frac{10\cdots 26}{20\cdots 93}$, $\frac{49\cdots 13}{72\cdots 48}a^{20}-\frac{28\cdots 45}{14\cdots 96}a^{19}-\frac{25\cdots 33}{24\cdots 16}a^{18}+\frac{39\cdots 83}{36\cdots 74}a^{17}+\frac{13\cdots 97}{21\cdots 22}a^{16}+\frac{35\cdots 27}{72\cdots 48}a^{15}-\frac{24\cdots 87}{13\cdots 62}a^{14}-\frac{16\cdots 49}{36\cdots 74}a^{13}+\frac{66\cdots 67}{42\cdots 44}a^{12}+\frac{24\cdots 73}{36\cdots 74}a^{11}+\frac{98\cdots 29}{36\cdots 74}a^{10}+\frac{40\cdots 95}{36\cdots 74}a^{9}-\frac{64\cdots 04}{18\cdots 37}a^{8}-\frac{31\cdots 59}{18\cdots 37}a^{7}+\frac{10\cdots 31}{20\cdots 93}a^{6}-\frac{15\cdots 72}{18\cdots 37}a^{5}-\frac{48\cdots 84}{18\cdots 37}a^{4}-\frac{13\cdots 19}{18\cdots 37}a^{3}-\frac{94\cdots 60}{60\cdots 79}a^{2}-\frac{21\cdots 37}{16\cdots 67}a-\frac{18\cdots 23}{20\cdots 93}$, $\frac{17\cdots 39}{14\cdots 96}a^{20}+\frac{13\cdots 85}{14\cdots 96}a^{19}-\frac{13\cdots 89}{12\cdots 58}a^{18}-\frac{10\cdots 49}{72\cdots 48}a^{17}+\frac{13\cdots 95}{36\cdots 74}a^{16}+\frac{20\cdots 77}{36\cdots 74}a^{15}+\frac{28\cdots 57}{13\cdots 62}a^{14}-\frac{90\cdots 73}{36\cdots 74}a^{13}-\frac{68\cdots 91}{18\cdots 37}a^{12}-\frac{30\cdots 50}{18\cdots 37}a^{11}-\frac{20\cdots 73}{36\cdots 74}a^{10}-\frac{15\cdots 29}{36\cdots 74}a^{9}+\frac{63\cdots 87}{36\cdots 74}a^{8}-\frac{31\cdots 31}{36\cdots 74}a^{7}+\frac{12\cdots 17}{79\cdots 86}a^{6}+\frac{28\cdots 23}{36\cdots 74}a^{5}+\frac{62\cdots 69}{18\cdots 37}a^{4}+\frac{10\cdots 62}{18\cdots 37}a^{3}+\frac{37\cdots 48}{60\cdots 79}a^{2}+\frac{47\cdots 32}{16\cdots 67}a+\frac{13\cdots 68}{20\cdots 93}$, $\frac{32\cdots 79}{22\cdots 56}a^{20}+\frac{70\cdots 55}{44\cdots 12}a^{19}-\frac{33\cdots 03}{14\cdots 04}a^{18}-\frac{33\cdots 81}{44\cdots 12}a^{17}+\frac{29\cdots 97}{22\cdots 56}a^{16}+\frac{16\cdots 77}{22\cdots 56}a^{15}-\frac{36\cdots 17}{12\cdots 42}a^{14}-\frac{61\cdots 89}{22\cdots 56}a^{13}-\frac{56\cdots 53}{22\cdots 56}a^{12}+\frac{33\cdots 03}{11\cdots 78}a^{11}+\frac{17\cdots 05}{11\cdots 78}a^{10}+\frac{58\cdots 91}{11\cdots 78}a^{9}+\frac{24\cdots 93}{11\cdots 78}a^{8}-\frac{89\cdots 49}{11\cdots 78}a^{7}-\frac{10\cdots 39}{72\cdots 26}a^{6}+\frac{12\cdots 25}{55\cdots 89}a^{5}-\frac{56\cdots 69}{11\cdots 78}a^{4}-\frac{43\cdots 83}{11\cdots 78}a^{3}-\frac{16\cdots 73}{18\cdots 63}a^{2}+\frac{65\cdots 33}{55\cdots 89}a+\frac{11\cdots 82}{61\cdots 21}$, $\frac{27\cdots 55}{80\cdots 72}a^{20}+\frac{17\cdots 33}{26\cdots 24}a^{19}-\frac{84\cdots 73}{16\cdots 44}a^{18}-\frac{17\cdots 35}{80\cdots 72}a^{17}+\frac{24\cdots 23}{80\cdots 72}a^{16}+\frac{39\cdots 84}{20\cdots 93}a^{15}-\frac{42\cdots 13}{80\cdots 72}a^{14}-\frac{55\cdots 05}{80\cdots 72}a^{13}-\frac{31\cdots 19}{26\cdots 24}a^{12}+\frac{11\cdots 10}{20\cdots 93}a^{11}+\frac{16\cdots 47}{40\cdots 86}a^{10}+\frac{32\cdots 65}{20\cdots 93}a^{9}+\frac{29\cdots 35}{20\cdots 93}a^{8}-\frac{23\cdots 03}{13\cdots 62}a^{7}-\frac{11\cdots 47}{23\cdots 58}a^{6}+\frac{14\cdots 15}{13\cdots 62}a^{5}-\frac{48\cdots 41}{40\cdots 86}a^{4}-\frac{20\cdots 56}{20\cdots 93}a^{3}-\frac{19\cdots 90}{67\cdots 31}a^{2}-\frac{16\cdots 01}{61\cdots 21}a+\frac{95\cdots 42}{67\cdots 31}$, $\frac{99\cdots 27}{14\cdots 96}a^{20}-\frac{11\cdots 47}{18\cdots 37}a^{19}-\frac{13\cdots 85}{12\cdots 58}a^{18}-\frac{15\cdots 27}{14\cdots 96}a^{17}+\frac{26\cdots 37}{36\cdots 74}a^{16}+\frac{30\cdots 31}{18\cdots 37}a^{15}-\frac{18\cdots 09}{80\cdots 72}a^{14}-\frac{52\cdots 99}{72\cdots 48}a^{13}+\frac{79\cdots 73}{36\cdots 74}a^{12}+\frac{14\cdots 37}{18\cdots 37}a^{11}+\frac{51\cdots 70}{18\cdots 37}a^{10}+\frac{62\cdots 73}{36\cdots 74}a^{9}-\frac{70\cdots 66}{18\cdots 37}a^{8}-\frac{50\cdots 48}{18\cdots 37}a^{7}+\frac{44\cdots 89}{67\cdots 31}a^{6}+\frac{27\cdots 32}{18\cdots 37}a^{5}-\frac{63\cdots 84}{18\cdots 37}a^{4}-\frac{37\cdots 33}{36\cdots 74}a^{3}-\frac{23\cdots 07}{60\cdots 79}a^{2}-\frac{28\cdots 85}{16\cdots 67}a-\frac{24\cdots 24}{20\cdots 93}$, $\frac{24\cdots 19}{48\cdots 32}a^{20}+\frac{84\cdots 33}{12\cdots 58}a^{19}-\frac{22\cdots 27}{16\cdots 44}a^{18}-\frac{37\cdots 79}{48\cdots 32}a^{17}-\frac{49\cdots 09}{12\cdots 58}a^{16}+\frac{72\cdots 50}{60\cdots 79}a^{15}+\frac{52\cdots 57}{26\cdots 24}a^{14}+\frac{15\cdots 77}{24\cdots 16}a^{13}-\frac{70\cdots 19}{24\cdots 16}a^{12}-\frac{95\cdots 05}{12\cdots 58}a^{11}-\frac{23\cdots 97}{71\cdots 74}a^{10}-\frac{99\cdots 88}{60\cdots 79}a^{9}-\frac{12\cdots 77}{12\cdots 58}a^{8}-\frac{58\cdots 33}{12\cdots 58}a^{7}-\frac{33\cdots 26}{20\cdots 93}a^{6}-\frac{48\cdots 87}{12\cdots 58}a^{5}-\frac{84\cdots 05}{12\cdots 58}a^{4}-\frac{15\cdots 11}{12\cdots 58}a^{3}-\frac{59\cdots 35}{20\cdots 93}a^{2}-\frac{22\cdots 99}{55\cdots 89}a+\frac{11\cdots 88}{67\cdots 31}$, $\frac{42\cdots 39}{14\cdots 96}a^{20}-\frac{62\cdots 35}{72\cdots 48}a^{19}-\frac{10\cdots 81}{24\cdots 16}a^{18}+\frac{26\cdots 11}{72\cdots 48}a^{17}+\frac{20\cdots 57}{72\cdots 48}a^{16}+\frac{14\cdots 89}{72\cdots 48}a^{15}-\frac{59\cdots 12}{67\cdots 31}a^{14}-\frac{11\cdots 73}{72\cdots 48}a^{13}+\frac{62\cdots 33}{72\cdots 48}a^{12}+\frac{41\cdots 57}{21\cdots 22}a^{11}+\frac{21\cdots 42}{18\cdots 37}a^{10}+\frac{10\cdots 69}{21\cdots 22}a^{9}-\frac{74\cdots 39}{36\cdots 74}a^{8}-\frac{24\cdots 09}{36\cdots 74}a^{7}+\frac{19\cdots 87}{67\cdots 31}a^{6}-\frac{18\cdots 97}{36\cdots 74}a^{5}-\frac{22\cdots 42}{18\cdots 37}a^{4}-\frac{46\cdots 00}{18\cdots 37}a^{3}+\frac{17\cdots 69}{60\cdots 79}a^{2}-\frac{15\cdots 91}{16\cdots 67}a-\frac{58\cdots 86}{20\cdots 93}$ Copy content Toggle raw display (assuming GRH)
Copy content comment:Fundamental units
 
Copy content sage:UK.fundamental_units()
 
Copy content gp:K.fu
 
Copy content magma:[K|fUK(g): g in Generators(UK)];
 
Copy content oscar:[K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 21312988696200000 \) (assuming GRH)
Copy content comment:Regulator
 
Copy content sage:K.regulator()
 
Copy content gp:K.reg
 
Copy content magma:Regulator(K);
 
Copy content oscar:regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{1}\cdot(2\pi)^{10}\cdot 21312988696200000 \cdot 7}{2\cdot\sqrt{569752580450182296234409142462680787211686353567744}}\cr\approx \mathstrut & 0.599374038453928 \end{aligned}\] (assuming GRH)

Copy content comment:Analytic class number formula
 
Copy content sage:# self-contained SageMath code snippet to compute the analytic class number formula x = polygen(QQ); K.<a> = NumberField(x^21 - 154*x^19 - 350*x^18 + 9422*x^17 + 38318*x^16 - 232820*x^15 - 1495990*x^14 - 59192*x^13 + 16100140*x^12 + 74605944*x^11 + 291794048*x^10 + 22521464*x^9 - 4000275328*x^8 - 1691077124*x^7 + 11054922536*x^6 - 418374125568*x^5 - 2346556141272*x^4 - 4154662343608*x^3 - 3218488878808*x^2 - 17560545695056*x - 50542023253032) DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent() hK = K.class_number(); wK = K.unit_group().torsion_generator().order(); 2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
Copy content gp:\\ self-contained Pari/GP code snippet to compute the analytic class number formula K = bnfinit(x^21 - 154*x^19 - 350*x^18 + 9422*x^17 + 38318*x^16 - 232820*x^15 - 1495990*x^14 - 59192*x^13 + 16100140*x^12 + 74605944*x^11 + 291794048*x^10 + 22521464*x^9 - 4000275328*x^8 - 1691077124*x^7 + 11054922536*x^6 - 418374125568*x^5 - 2346556141272*x^4 - 4154662343608*x^3 - 3218488878808*x^2 - 17560545695056*x - 50542023253032, 1); [polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
Copy content magma:/* self-contained Magma code snippet to compute the analytic class number formula */ Qx<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^21 - 154*x^19 - 350*x^18 + 9422*x^17 + 38318*x^16 - 232820*x^15 - 1495990*x^14 - 59192*x^13 + 16100140*x^12 + 74605944*x^11 + 291794048*x^10 + 22521464*x^9 - 4000275328*x^8 - 1691077124*x^7 + 11054922536*x^6 - 418374125568*x^5 - 2346556141272*x^4 - 4154662343608*x^3 - 3218488878808*x^2 - 17560545695056*x - 50542023253032); OK := Integers(K); DK := Discriminant(OK); UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK); r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK); hK := #clK; wK := #TorsionSubgroup(UK); 2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
Copy content oscar:# self-contained Oscar code snippet to compute the analytic class number formula Qx, x = polynomial_ring(QQ); K, a = number_field(x^21 - 154*x^19 - 350*x^18 + 9422*x^17 + 38318*x^16 - 232820*x^15 - 1495990*x^14 - 59192*x^13 + 16100140*x^12 + 74605944*x^11 + 291794048*x^10 + 22521464*x^9 - 4000275328*x^8 - 1691077124*x^7 + 11054922536*x^6 - 418374125568*x^5 - 2346556141272*x^4 - 4154662343608*x^3 - 3218488878808*x^2 - 17560545695056*x - 50542023253032); OK = ring_of_integers(K); DK = discriminant(OK); UK, fUK = unit_group(OK); clK, fclK = class_group(OK); r1,r2 = signature(K); RK = regulator(K); RR = parent(RK); hK = order(clK); wK = torsion_units_order(K); 2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_7^2:S_3$ (as 21T17):

Copy content comment:Galois group
 
Copy content sage:K.galois_group(type='pari')
 
Copy content gp:polgalois(K.pol)
 
Copy content magma:G = GaloisGroup(K);
 
Copy content oscar:G, Gtx = galois_group(K); degree(K) > 1 ? (G, transitive_group_identification(G)) : (G, nothing)
 
A solvable group of order 294
The 20 conjugacy class representatives for $C_7^2:S_3$
Character table for $C_7^2:S_3$

Intermediate fields

3.1.31.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Copy content comment:Intermediate fields
 
Copy content sage:K.subfields()[1:-1]
 
Copy content gp:L = nfsubfields(K); L[2..length(L)]
 
Copy content magma:L := Subfields(K); L[2..#L];
 
Copy content oscar:subfields(K)[2:end-1]
 

Sibling fields

Degree 14 sibling: data not computed
Degree 21 sibling: data not computed
Degree 42 siblings: data not computed
Minimal sibling: 14.0.337337631352558562817384077600704.1

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R ${\href{/padicField/3.14.0.1}{14} }{,}\,{\href{/padicField/3.2.0.1}{2} }^{3}{,}\,{\href{/padicField/3.1.0.1}{1} }$ ${\href{/padicField/5.3.0.1}{3} }^{7}$ R ${\href{/padicField/11.14.0.1}{14} }{,}\,{\href{/padicField/11.2.0.1}{2} }^{3}{,}\,{\href{/padicField/11.1.0.1}{1} }$ ${\href{/padicField/13.14.0.1}{14} }{,}\,{\href{/padicField/13.2.0.1}{2} }^{3}{,}\,{\href{/padicField/13.1.0.1}{1} }$ ${\href{/padicField/17.14.0.1}{14} }{,}\,{\href{/padicField/17.2.0.1}{2} }^{3}{,}\,{\href{/padicField/17.1.0.1}{1} }$ ${\href{/padicField/19.3.0.1}{3} }^{7}$ ${\href{/padicField/23.14.0.1}{14} }{,}\,{\href{/padicField/23.2.0.1}{2} }^{3}{,}\,{\href{/padicField/23.1.0.1}{1} }$ ${\href{/padicField/29.14.0.1}{14} }{,}\,{\href{/padicField/29.2.0.1}{2} }^{3}{,}\,{\href{/padicField/29.1.0.1}{1} }$ R ${\href{/padicField/37.14.0.1}{14} }{,}\,{\href{/padicField/37.2.0.1}{2} }^{3}{,}\,{\href{/padicField/37.1.0.1}{1} }$ ${\href{/padicField/41.3.0.1}{3} }^{7}$ ${\href{/padicField/43.14.0.1}{14} }{,}\,{\href{/padicField/43.2.0.1}{2} }^{3}{,}\,{\href{/padicField/43.1.0.1}{1} }$ ${\href{/padicField/47.7.0.1}{7} }^{3}$ ${\href{/padicField/53.14.0.1}{14} }{,}\,{\href{/padicField/53.2.0.1}{2} }^{3}{,}\,{\href{/padicField/53.1.0.1}{1} }$ ${\href{/padicField/59.3.0.1}{3} }^{7}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

Copy content comment:Frobenius cycle types
 
Copy content sage:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Sage: p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
Copy content gp:\\ to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Pari: p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
Copy content magma:// to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Magma: p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
Copy content oscar:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Oscar: p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.3.7.18a1.2$x^{21} + 7 x^{19} + 7 x^{18} + 21 x^{17} + 42 x^{16} + 56 x^{15} + 105 x^{14} + 140 x^{13} + 175 x^{12} + 231 x^{11} + 245 x^{10} + 252 x^{9} + 252 x^{8} + 211 x^{7} + 168 x^{6} + 126 x^{5} + 77 x^{4} + 42 x^{3} + 21 x^{2} + 7 x + 3$$7$$3$$18$21T2$$[\ ]_{7}^{3}$$
\(7\) Copy content Toggle raw display 7.3.7.36a89.6$x^{21} + 77 x^{20} + 2016 x^{19} + 26502 x^{18} + 198912 x^{17} + 891576 x^{16} + 2444064 x^{15} + 4572336 x^{14} + 7846272 x^{13} + 11762912 x^{12} + 11791360 x^{11} + 18127872 x^{10} + 9703680 x^{9} + 17552640 x^{8} + 4515840 x^{7} + 10719744 x^{6} + 1118208 x^{5} + 3999744 x^{4} + 114688 x^{3} + 831488 x^{2} + 245 x + 73735$$7$$3$$36$not computednot computed
\(31\) Copy content Toggle raw display $\Q_{31}$$x + 28$$1$$1$$0$Trivial$$[\ ]$$
31.1.2.1a1.1$x^{2} + 31$$2$$1$$1$$C_2$$$[\ ]_{2}$$
31.1.2.1a1.1$x^{2} + 31$$2$$1$$1$$C_2$$$[\ ]_{2}$$
31.1.2.1a1.1$x^{2} + 31$$2$$1$$1$$C_2$$$[\ ]_{2}$$
31.7.2.7a1.2$x^{14} + 2 x^{8} + 56 x^{7} + x^{2} + 56 x + 815$$2$$7$$7$$C_{14}$$$[\ ]_{2}^{7}$$

Spectrum of ring of integers

(0)(0)(2)(3)(5)(7)(11)(13)(17)(19)(23)(29)(31)(37)(41)(43)(47)(53)(59)