Normalized defining polynomial
\( x^{21} - 154 x^{19} - 350 x^{18} + 9422 x^{17} + 38318 x^{16} - 232820 x^{15} - 1495990 x^{14} - 59192 x^{13} + 16100140 x^{12} + 74605944 x^{11} + 291794048 x^{10} + 22521464 x^{9} - 4000275328 x^{8} - 1691077124 x^{7} + 11054922536 x^{6} - 418374125568 x^{5} - 2346556141272 x^{4} - 4154662343608 x^{3} - 3218488878808 x^{2} - 17560545695056 x - 50542023253032 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[1, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(569752580450182296234409142462680787211686353567744=2^{18}\cdot 7^{36}\cdot 31^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $261.18$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2} a^{7}$, $\frac{1}{2} a^{8}$, $\frac{1}{2} a^{9}$, $\frac{1}{2} a^{10}$, $\frac{1}{2} a^{11}$, $\frac{1}{4} a^{12} - \frac{1}{2} a^{5}$, $\frac{1}{4} a^{13} - \frac{1}{2} a^{6}$, $\frac{1}{4} a^{14}$, $\frac{1}{4} a^{15}$, $\frac{1}{4} a^{16}$, $\frac{1}{8} a^{17} - \frac{1}{2} a^{3}$, $\frac{1}{24} a^{18} - \frac{1}{12} a^{16} + \frac{1}{12} a^{15} - \frac{1}{12} a^{14} - \frac{1}{12} a^{13} + \frac{1}{12} a^{12} - \frac{1}{6} a^{11} + \frac{1}{6} a^{9} - \frac{1}{6} a^{8} + \frac{1}{6} a^{7} + \frac{1}{6} a^{6} - \frac{1}{2} a^{5} + \frac{1}{6} a^{4} + \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{408} a^{19} + \frac{1}{68} a^{18} + \frac{2}{51} a^{17} - \frac{7}{102} a^{16} - \frac{13}{204} a^{15} - \frac{4}{51} a^{14} + \frac{1}{51} a^{13} + \frac{5}{102} a^{12} + \frac{3}{17} a^{11} - \frac{4}{51} a^{10} + \frac{5}{102} a^{9} - \frac{23}{102} a^{8} + \frac{11}{51} a^{7} + \frac{6}{17} a^{6} + \frac{49}{102} a^{5} - \frac{2}{17} a^{4} + \frac{16}{51} a^{3} + \frac{5}{51} a^{2} + \frac{7}{17} a - \frac{1}{17}$, $\frac{1}{1455426143404991616695356644999181054150559900428496719549565151654844941344056953045369450999448521896833951308124038696} a^{20} + \frac{358099488039695327424811358861358423146508383125810617184718179134306369227504774826659159745975935120752505839288325}{1455426143404991616695356644999181054150559900428496719549565151654844941344056953045369450999448521896833951308124038696} a^{19} + \frac{2337102345466173329767369938586161330748157595156740752729895277918797025634806088737885531911855055974742644579438245}{485142047801663872231785548333060351383519966809498906516521717218281647114685651015123150333149507298944650436041346232} a^{18} + \frac{77921144163891295840079362806573493186095020280274381229733981654890358884255931606570292223424812495217222382726765243}{1455426143404991616695356644999181054150559900428496719549565151654844941344056953045369450999448521896833951308124038696} a^{17} + \frac{4845044390311646111886856634150825035235862830462672209888131578327683175375120581190722294326271409587551097747080953}{727713071702495808347678322499590527075279950214248359774782575827422470672028476522684725499724260948416975654062019348} a^{16} - \frac{20137700860786084213205006895166098711481604361429918686853258013099215700479293566225244737946301697409780006714784895}{727713071702495808347678322499590527075279950214248359774782575827422470672028476522684725499724260948416975654062019348} a^{15} - \frac{65948056096770592904919314334831416463420688713335068186645901185231988590271636318276862793404452202241212483346895}{26952335988981326235099197129614463965751109267194383695362317623237869284149202834173508351841639294385813913113408124} a^{14} + \frac{21908876564307580307564824606836628681204047870644177779781462975910790464973656319572841343806749408997669926751560397}{727713071702495808347678322499590527075279950214248359774782575827422470672028476522684725499724260948416975654062019348} a^{13} - \frac{87223518686748732374586543086867709881617207061233792473630292377507584177103576914422976934664063440255727354393212539}{727713071702495808347678322499590527075279950214248359774782575827422470672028476522684725499724260948416975654062019348} a^{12} + \frac{30899403758832394134620823495434797464857932405702615964152555796018551172966677312295767153931300410864503761064371197}{181928267925623952086919580624897631768819987553562089943695643956855617668007119130671181374931065237104243913515504837} a^{11} - \frac{51163471885043103523911335036450513237992666402907944317541610029289482790914085716304536939612495863410492980329237797}{363856535851247904173839161249795263537639975107124179887391287913711235336014238261342362749862130474208487827031009674} a^{10} - \frac{2760446783334215437048557173651978910569459785918468701090605953861280961843797566428855615301468850804787846972664469}{363856535851247904173839161249795263537639975107124179887391287913711235336014238261342362749862130474208487827031009674} a^{9} - \frac{42275464283051929938124533674622041502179927927211697561235480509526378416748755198137102378663754391535134226285323782}{181928267925623952086919580624897631768819987553562089943695643956855617668007119130671181374931065237104243913515504837} a^{8} + \frac{53678232569163724863689346876200968411558781252345542371368380187121104518778199304183048359978111046984701619358004073}{363856535851247904173839161249795263537639975107124179887391287913711235336014238261342362749862130474208487827031009674} a^{7} - \frac{2703530143524124981223290937875895684829756574634751006910758243325087731032350606057149563831954844180726659472412028}{20214251991735994676324397847210847974313331950395787771521738217428401963111902125630131263881229470789360434835056093} a^{6} + \frac{54436776300816158786337285887624861214341219691954633206552874652842187279385757136166984604919909682876716108837864411}{181928267925623952086919580624897631768819987553562089943695643956855617668007119130671181374931065237104243913515504837} a^{5} + \frac{51453730735959927031207716050455147065337976867729986541172774938000863452612854183541503896885878079258905327490147603}{363856535851247904173839161249795263537639975107124179887391287913711235336014238261342362749862130474208487827031009674} a^{4} - \frac{71692009969161146314528664497360909127295639304144930340892950927757806138195960935211616796287004361800597214471373061}{363856535851247904173839161249795263537639975107124179887391287913711235336014238261342362749862130474208487827031009674} a^{3} + \frac{7788389321998256353046134103652299174394161156299011224349057719901242612503357068779092272530322384155976667304449817}{60642755975207984028973193541632543922939995851187363314565214652285205889335706376890393791643688412368081304505168279} a^{2} - \frac{7118034879590876688382994612650961393667852306343181494938682302476850422632321200457607152894298499786310080336092392}{16538933447783995644265416420445239251710907959414735449426876723350510697091556284606471034084642294282203992137773167} a - \frac{23364281511151157492032719565054763955991218648285438397470631103322279270700993460516569626494367810223103395530193}{1189073646572705569195552814541814586724313644140928692442455189260494233124229536801772427287131145340550613813826829}$
Class group and class number
$C_{7}$, which has order $7$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 21312988696200000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_7^2:S_3$ (as 21T17):
| A solvable group of order 294 |
| The 20 conjugacy class representatives for $C_7^2:S_3$ |
| Character table for $C_7^2:S_3$ |
Intermediate fields
| 3.1.31.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 14 sibling: | data not computed |
| Degree 21 sibling: | data not computed |
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.14.0.1}{14} }{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }$ | ${\href{/LocalNumberField/5.3.0.1}{3} }^{7}$ | R | ${\href{/LocalNumberField/11.14.0.1}{14} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | ${\href{/LocalNumberField/13.14.0.1}{14} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | ${\href{/LocalNumberField/17.14.0.1}{14} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/23.14.0.1}{14} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.14.0.1}{14} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | R | ${\href{/LocalNumberField/37.14.0.1}{14} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/43.14.0.1}{14} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/53.14.0.1}{14} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{7}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 7 | Data not computed | ||||||
| $31$ | $\Q_{31}$ | $x + 7$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 31.2.1.2 | $x^{2} + 217$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 31.2.1.2 | $x^{2} + 217$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 31.2.1.2 | $x^{2} + 217$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 31.14.7.2 | $x^{14} - 887503681 x^{2} + 495227053998$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ | |