Normalized defining polynomial
\( x^{21} - 8 x^{20} - 72 x^{19} + 777 x^{18} + 1280 x^{17} - 30864 x^{16} + 32924 x^{15} + 619022 x^{14} - 1803833 x^{13} - 5764356 x^{12} + 32365684 x^{11} + 462163 x^{10} - 268486192 x^{9} + 462676076 x^{8} + 689921764 x^{7} - 3314886142 x^{6} + 3471565121 x^{5} + 3447877372 x^{4} - 15784422872 x^{3} + 25330176301 x^{2} - 22752266766 x + 9170719416 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[1, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(4892247057817410373428509316744956153541136384=2^{12}\cdot 7^{2}\cdot 11^{10}\cdot 13^{16}\cdot 1188409^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $149.86$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 11, 13, 1188409$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{4}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{10} - \frac{1}{4} a^{7} - \frac{1}{4} a^{6} + \frac{1}{4} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{52} a^{12} - \frac{1}{52} a^{11} - \frac{1}{13} a^{10} + \frac{1}{26} a^{9} - \frac{7}{52} a^{8} - \frac{5}{52} a^{7} - \frac{1}{26} a^{6} - \frac{1}{26} a^{5} - \frac{1}{4} a^{4} - \frac{21}{52} a^{3} + \frac{9}{26} a^{2} + \frac{5}{26} a + \frac{2}{13}$, $\frac{1}{52} a^{13} - \frac{5}{52} a^{11} - \frac{1}{26} a^{10} - \frac{5}{52} a^{9} - \frac{3}{13} a^{8} - \frac{7}{52} a^{7} - \frac{1}{13} a^{6} - \frac{15}{52} a^{5} + \frac{9}{26} a^{4} - \frac{3}{52} a^{3} - \frac{6}{13} a^{2} + \frac{9}{26} a + \frac{2}{13}$, $\frac{1}{52} a^{14} + \frac{3}{26} a^{11} - \frac{3}{13} a^{10} - \frac{1}{26} a^{9} + \frac{5}{26} a^{8} + \frac{5}{26} a^{7} - \frac{3}{13} a^{6} - \frac{9}{26} a^{5} - \frac{4}{13} a^{4} + \frac{7}{26} a^{3} + \frac{17}{52} a^{2} + \frac{3}{26} a - \frac{3}{13}$, $\frac{1}{104} a^{15} - \frac{1}{104} a^{14} - \frac{1}{104} a^{13} - \frac{1}{104} a^{12} - \frac{3}{52} a^{11} + \frac{7}{52} a^{10} - \frac{23}{104} a^{9} - \frac{17}{104} a^{8} - \frac{3}{52} a^{7} - \frac{7}{52} a^{6} - \frac{47}{104} a^{5} + \frac{51}{104} a^{4} + \frac{49}{104} a^{3} + \frac{43}{104} a^{2} + \frac{25}{52} a$, $\frac{1}{104} a^{16} - \frac{1}{104} a^{12} + \frac{1}{26} a^{11} - \frac{9}{104} a^{10} + \frac{5}{52} a^{9} - \frac{17}{104} a^{8} + \frac{1}{13} a^{7} - \frac{1}{104} a^{6} + \frac{15}{52} a^{5} - \frac{1}{4} a^{4} + \frac{5}{13} a^{3} + \frac{31}{104} a^{2} + \frac{1}{52} a + \frac{5}{13}$, $\frac{1}{208} a^{17} - \frac{1}{208} a^{15} + \frac{1}{208} a^{14} - \frac{1}{208} a^{12} - \frac{23}{208} a^{11} - \frac{3}{104} a^{10} - \frac{3}{104} a^{9} + \frac{15}{208} a^{8} + \frac{9}{208} a^{7} - \frac{11}{104} a^{6} - \frac{71}{208} a^{5} - \frac{89}{208} a^{4} + \frac{41}{104} a^{3} - \frac{71}{208} a^{2} + \frac{17}{104} a + \frac{7}{26}$, $\frac{1}{208} a^{18} - \frac{1}{208} a^{16} - \frac{1}{208} a^{15} - \frac{1}{104} a^{14} + \frac{1}{208} a^{13} - \frac{1}{208} a^{12} + \frac{7}{104} a^{11} - \frac{7}{104} a^{10} + \frac{5}{208} a^{9} - \frac{33}{208} a^{8} + \frac{3}{104} a^{7} + \frac{17}{208} a^{6} - \frac{67}{208} a^{5} - \frac{1}{26} a^{4} + \frac{31}{208} a^{3} - \frac{5}{52} a^{2} - \frac{19}{52} a$, $\frac{1}{416} a^{19} - \frac{1}{416} a^{18} - \frac{1}{208} a^{16} - \frac{1}{208} a^{15} - \frac{1}{208} a^{13} - \frac{1}{104} a^{12} + \frac{41}{416} a^{11} - \frac{49}{416} a^{10} - \frac{3}{13} a^{9} + \frac{21}{104} a^{8} + \frac{2}{13} a^{7} + \frac{11}{52} a^{6} - \frac{21}{52} a^{5} + \frac{7}{208} a^{4} - \frac{205}{416} a^{3} + \frac{7}{416} a^{2} + \frac{97}{208} a - \frac{17}{52}$, $\frac{1}{38663016005041073044159015319488106294768205979162272} a^{20} + \frac{4117019918171410719927734153066373654624100361149}{9665754001260268261039753829872026573692051494790568} a^{19} + \frac{25342974273119354788957154249994918005354813147145}{12887672001680357681386338439829368764922735326387424} a^{18} + \frac{2647456876687124341396295717957256539637142827669}{1610959000210044710173292304978671095615341915798428} a^{17} + \frac{17622644735049322015937815868493513054063354201955}{4832877000630134130519876914936013286846025747395284} a^{16} + \frac{13656589615333410552310657479004851828444633484145}{3221918000420089420346584609957342191230683831596856} a^{15} - \frac{17137013402433662660261132897246087660144800131247}{2416438500315067065259938457468006643423012873697642} a^{14} + \frac{175293651767509637372473646855663744169365548169005}{19331508002520536522079507659744053147384102989581136} a^{13} - \frac{291242656209018410327847465281637235161361889403473}{38663016005041073044159015319488106294768205979162272} a^{12} + \frac{55853122242388420474355066226262438979274554668909}{6443836000840178840693169219914684382461367663193712} a^{11} + \frac{6888316822983739302261268775861458955687476850331667}{38663016005041073044159015319488106294768205979162272} a^{10} - \frac{7945519813158180244989102052766482419488664716203}{4832877000630134130519876914936013286846025747395284} a^{9} - \frac{1748744449389917080923256354022739461682860028055457}{19331508002520536522079507659744053147384102989581136} a^{8} - \frac{160132281788321563274453580505357825990914532032539}{19331508002520536522079507659744053147384102989581136} a^{7} + \frac{11111337057536654727156451437760723775773116485687}{61175658235824482664808568543493839074000325916396} a^{6} + \frac{479251481674528939773200663825753257917380903235421}{1208219250157533532629969228734003321711506436848821} a^{5} + \frac{19021207905857734103941590039167760396655157120180015}{38663016005041073044159015319488106294768205979162272} a^{4} + \frac{5180892607062725708286982474818459167058744420643241}{19331508002520536522079507659744053147384102989581136} a^{3} - \frac{14272962980898057502576156220205075271033858399807733}{38663016005041073044159015319488106294768205979162272} a^{2} - \frac{5123850749807680247844793295941009019482464771622777}{19331508002520536522079507659744053147384102989581136} a - \frac{761388986778761354732511197852063780002235054408049}{1610959000210044710173292304978671095615341915798428}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3220846909930000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 5878656 |
| The 96 conjugacy class representatives for t21n134 are not computed |
| Character table for t21n134 is not computed |
Intermediate fields
| 7.1.38014691.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.9.0.1}{9} }{,}\,{\href{/LocalNumberField/3.6.0.1}{6} }{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }$ | $21$ | R | R | R | $18{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | $18{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.9.0.1}{9} }{,}\,{\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.12.0.1}{12} }{,}\,{\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{3}$ | $21$ | ${\href{/LocalNumberField/37.9.0.1}{9} }{,}\,{\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.12.0.1}{12} }{,}\,{\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.7.0.1}{7} }^{3}$ | $21$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 2.6.0.1 | $x^{6} - x + 1$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 2.12.12.19 | $x^{12} - 6 x^{10} + 27 x^{8} - 4 x^{6} + 7 x^{4} + 10 x^{2} + 29$ | $2$ | $6$ | $12$ | 12T105 | $[2, 2, 2, 2]^{12}$ | |
| $7$ | 7.3.2.1 | $x^{3} + 14$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 7.6.0.1 | $x^{6} + 3 x^{2} - x + 5$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 7.12.0.1 | $x^{12} + 3 x^{2} - 2 x + 3$ | $1$ | $12$ | $0$ | $C_{12}$ | $[\ ]^{12}$ | |
| $11$ | $\Q_{11}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.6.3.2 | $x^{6} - 121 x^{2} + 3993$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 11.12.6.1 | $x^{12} + 242 x^{8} + 21296 x^{6} + 14641 x^{4} + 1932612 x^{2} + 113379904$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |
| 13 | Data not computed | ||||||
| 1188409 | Data not computed | ||||||