Normalized defining polynomial
\( x^{21} - 7 x^{20} - 87 x^{19} + 493 x^{18} + 4100 x^{17} - 13417 x^{16} - 124892 x^{15} + 111289 x^{14} + 2352592 x^{13} + 2474157 x^{12} - 23486832 x^{11} - 70446394 x^{10} + 52274394 x^{9} + 601006638 x^{8} + 1002481186 x^{7} - 653640791 x^{6} - 5435383239 x^{5} - 10558762823 x^{4} - 11409675665 x^{3} - 7446639098 x^{2} - 2768423389 x - 454136989 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[1, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(45368860523527219788129568491582052298034241=7^{2}\cdot 13^{2}\cdot 71^{10}\cdot 1621^{2}\cdot 25308289^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $119.92$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 13, 71, 1621, 25308289$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{13} - \frac{1}{2} a^{12} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{17} - \frac{1}{2} a^{13} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{18} - \frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{14} a^{19} + \frac{3}{14} a^{16} - \frac{1}{7} a^{15} - \frac{3}{14} a^{14} + \frac{3}{14} a^{13} - \frac{3}{7} a^{12} - \frac{1}{14} a^{11} + \frac{3}{14} a^{10} - \frac{1}{14} a^{9} - \frac{1}{7} a^{8} + \frac{1}{14} a^{7} + \frac{1}{7} a^{6} + \frac{3}{14} a^{5} + \frac{3}{14} a^{3} + \frac{3}{7} a - \frac{3}{14}$, $\frac{1}{15657087336229376716052760922265953664559216680156467163416244666} a^{20} + \frac{141345205095071480525475225189975777997355129698448041204129825}{15657087336229376716052760922265953664559216680156467163416244666} a^{19} - \frac{185089291805526501414178054311631469939044572442489330627889513}{1118363381159241194003768637304710976039944048582604797386874619} a^{18} - \frac{118720971194013248811668230734800524518112763146890999801689794}{7828543668114688358026380461132976832279608340078233581708122333} a^{17} - \frac{755173503917131641036714907875163105937116784488255976606005877}{7828543668114688358026380461132976832279608340078233581708122333} a^{16} + \frac{1839042363734773749295110539831474272578901380312094357147648478}{7828543668114688358026380461132976832279608340078233581708122333} a^{15} + \frac{2444423777849668690609102744433555653831426826806327740583838857}{15657087336229376716052760922265953664559216680156467163416244666} a^{14} + \frac{5358841818196021020352013488507938065229205523928912141090481589}{15657087336229376716052760922265953664559216680156467163416244666} a^{13} + \frac{6397334263930276919457048157282279377894488132596848565837289691}{15657087336229376716052760922265953664559216680156467163416244666} a^{12} - \frac{13493943977826376621175988054165499231308882911075411091125766}{7828543668114688358026380461132976832279608340078233581708122333} a^{11} + \frac{1753643527273656240348001388257626063639069054447921275682868341}{7828543668114688358026380461132976832279608340078233581708122333} a^{10} - \frac{2816692306037471975798358395884683934619705143226619643864445240}{7828543668114688358026380461132976832279608340078233581708122333} a^{9} - \frac{7512717049371927137164824103864708706056821428320734953052609199}{15657087336229376716052760922265953664559216680156467163416244666} a^{8} - \frac{3874028879697314470872363465776207579265431995720778176541106108}{7828543668114688358026380461132976832279608340078233581708122333} a^{7} + \frac{7166333310625375951394177727066139424475462534610304837100081721}{15657087336229376716052760922265953664559216680156467163416244666} a^{6} - \frac{1715875596480417014088941177287438838149088589832512519866727276}{7828543668114688358026380461132976832279608340078233581708122333} a^{5} + \frac{7208977574538178307305507184952023169070374579134213788332201919}{15657087336229376716052760922265953664559216680156467163416244666} a^{4} - \frac{3096681153245195407743495570775200620021879581635055332624716140}{7828543668114688358026380461132976832279608340078233581708122333} a^{3} - \frac{2574455104425040667003354437731883944375383169343323740208520415}{7828543668114688358026380461132976832279608340078233581708122333} a^{2} - \frac{1486322811725814898730166670839085112721207513595503081265133407}{7828543668114688358026380461132976832279608340078233581708122333} a + \frac{356822183432475236857533429367566441071704151173612329474511069}{15657087336229376716052760922265953664559216680156467163416244666}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6119629514680 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1959552 |
| The 168 conjugacy class representatives for t21n124 are not computed |
| Character table for t21n124 is not computed |
Intermediate fields
| 7.1.357911.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.7.0.1}{7} }^{3}$ | $21$ | $21$ | R | ${\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{7}$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{3}$ | $21$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | $21$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | $21$ | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 7.4.2.2 | $x^{4} - 7 x^{2} + 147$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 7.4.0.1 | $x^{4} + x^{2} - 3 x + 5$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 7.6.0.1 | $x^{6} + 3 x^{2} - x + 5$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| $13$ | 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 13.3.2.3 | $x^{3} - 52$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 13.4.0.1 | $x^{4} + x^{2} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 13.6.0.1 | $x^{6} + x^{2} - 2 x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 13.6.0.1 | $x^{6} + x^{2} - 2 x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| $71$ | $\Q_{71}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 71.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 71.2.1.2 | $x^{2} + 142$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 71.2.1.2 | $x^{2} + 142$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 71.2.1.2 | $x^{2} + 142$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 71.4.2.1 | $x^{4} + 1491 x^{2} + 609961$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 71.4.3.1 | $x^{4} + 142$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 71.4.2.1 | $x^{4} + 1491 x^{2} + 609961$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 1621 | Data not computed | ||||||
| 25308289 | Data not computed | ||||||