Normalized defining polynomial
\( x^{21} - 7 x^{20} + 112 x^{19} - 644 x^{18} + 5327 x^{17} - 25445 x^{16} + 141288 x^{15} - 561156 x^{14} + 2291226 x^{13} - 7649978 x^{12} + 24182648 x^{11} - 60738860 x^{10} + 134840062 x^{9} - 263747806 x^{8} + 513894856 x^{7} - 611271612 x^{6} + 815747877 x^{5} + 952919793 x^{4} + 211758120 x^{3} + 7341777072 x^{2} - 4043917773 x + 14403261843 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[1, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3988584188566184927712460097535808514732885044093734132645888=2^{33}\cdot 3^{19}\cdot 7^{40}\cdot 13^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $768.69$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{7} - \frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} - \frac{1}{4} a^{3} + \frac{1}{4} a^{2} + \frac{1}{4} a + \frac{1}{4}$, $\frac{1}{12} a^{8} + \frac{1}{12} a^{7} - \frac{1}{4} a^{6} + \frac{1}{12} a^{5} + \frac{1}{12} a^{4} + \frac{1}{4} a^{3} + \frac{1}{4} a^{2} + \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{12} a^{9} - \frac{1}{12} a^{7} + \frac{1}{12} a^{6} - \frac{1}{4} a^{5} - \frac{1}{12} a^{4} - \frac{1}{4} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a - \frac{1}{4}$, $\frac{1}{24} a^{10} - \frac{1}{24} a^{8} - \frac{1}{12} a^{7} + \frac{1}{12} a^{5} + \frac{1}{4} a^{3} + \frac{1}{8} a^{2} - \frac{1}{4} a - \frac{1}{8}$, $\frac{1}{24} a^{11} - \frac{1}{24} a^{9} + \frac{1}{12} a^{7} - \frac{1}{6} a^{6} + \frac{1}{12} a^{5} - \frac{1}{6} a^{4} + \frac{3}{8} a^{3} + \frac{1}{8} a$, $\frac{1}{24} a^{12} - \frac{1}{24} a^{8} - \frac{1}{12} a^{7} + \frac{1}{12} a^{6} + \frac{1}{12} a^{5} + \frac{1}{24} a^{4} - \frac{1}{4} a^{3} + \frac{1}{4} a^{2} + \frac{1}{4} a - \frac{3}{8}$, $\frac{1}{24} a^{13} - \frac{1}{24} a^{9} - \frac{1}{12} a^{7} + \frac{1}{12} a^{6} - \frac{1}{8} a^{5} + \frac{1}{12} a^{4} - \frac{1}{4} a^{3} + \frac{1}{4} a^{2} + \frac{1}{8} a + \frac{1}{4}$, $\frac{1}{7056} a^{14} - \frac{5}{252} a^{13} - \frac{1}{336} a^{12} - \frac{5}{504} a^{11} - \frac{19}{1008} a^{10} - \frac{1}{56} a^{9} - \frac{5}{1008} a^{8} + \frac{163}{1764} a^{7} - \frac{53}{336} a^{6} - \frac{1}{7} a^{5} + \frac{17}{336} a^{4} - \frac{13}{56} a^{3} + \frac{51}{112} a^{2} - \frac{5}{56} a + \frac{235}{784}$, $\frac{1}{7056} a^{15} + \frac{11}{1008} a^{13} - \frac{5}{504} a^{12} + \frac{1}{112} a^{11} + \frac{5}{504} a^{10} + \frac{37}{1008} a^{9} - \frac{11}{588} a^{8} + \frac{29}{1008} a^{7} + \frac{1}{42} a^{6} - \frac{53}{336} a^{5} - \frac{25}{168} a^{4} - \frac{5}{112} a^{3} + \frac{23}{56} a^{2} - \frac{255}{784} a - \frac{1}{28}$, $\frac{1}{14112} a^{16} - \frac{1}{84} a^{13} - \frac{1}{168} a^{12} + \frac{1}{84} a^{11} - \frac{1}{168} a^{10} + \frac{19}{588} a^{9} + \frac{13}{336} a^{8} - \frac{1}{252} a^{7} - \frac{3}{14} a^{6} + \frac{1}{14} a^{5} + \frac{19}{168} a^{4} + \frac{1}{7} a^{3} + \frac{169}{392} a^{2} - \frac{1}{7} a + \frac{75}{224}$, $\frac{1}{42336} a^{17} + \frac{1}{42336} a^{16} - \frac{1}{168} a^{13} - \frac{1}{84} a^{12} + \frac{1}{63} a^{11} - \frac{67}{3528} a^{10} + \frac{23}{2352} a^{9} + \frac{11}{432} a^{8} - \frac{5}{378} a^{7} - \frac{11}{84} a^{6} + \frac{5}{56} a^{5} - \frac{5}{28} a^{4} + \frac{31}{98} a^{3} - \frac{191}{392} a^{2} + \frac{295}{672} a - \frac{137}{672}$, $\frac{1}{42336} a^{18} - \frac{1}{42336} a^{16} - \frac{1}{168} a^{13} - \frac{1}{72} a^{12} + \frac{1}{147} a^{11} - \frac{13}{1008} a^{10} - \frac{275}{10584} a^{9} + \frac{1}{336} a^{8} - \frac{53}{756} a^{7} - \frac{13}{84} a^{6} - \frac{17}{168} a^{5} + \frac{47}{392} a^{4} + \frac{9}{28} a^{3} - \frac{2111}{4704} a^{2} - \frac{15}{56} a - \frac{139}{672}$, $\frac{1}{296352} a^{19} - \frac{1}{98784} a^{18} - \frac{1}{148176} a^{17} - \frac{5}{148176} a^{16} - \frac{1}{16464} a^{15} - \frac{1}{16464} a^{14} + \frac{127}{7056} a^{13} - \frac{299}{16464} a^{12} + \frac{101}{6174} a^{11} - \frac{11}{74088} a^{10} - \frac{1985}{49392} a^{9} - \frac{1339}{148176} a^{8} - \frac{10187}{148176} a^{7} + \frac{575}{2352} a^{6} - \frac{3155}{16464} a^{5} - \frac{2785}{16464} a^{4} + \frac{4255}{32928} a^{3} + \frac{2733}{10976} a^{2} - \frac{163}{4116} a + \frac{607}{4116}$, $\frac{1}{2453123133405044560498075177712662748228772420391606971100579008} a^{20} + \frac{831912887717954541969176861370396588357494181301530693823}{613280783351261140124518794428165687057193105097901742775144752} a^{19} - \frac{811398281196807025913073272650547475367184153874473870957}{175223080957503182892719655550904482016340887170829069364327072} a^{18} + \frac{1249390799482703034190531028438311883550064339374421638725}{408853855567507426749679196285443791371462070065267828516763168} a^{17} - \frac{21744760811941700720333486986004457626824530107865652322069}{2453123133405044560498075177712662748228772420391606971100579008} a^{16} + \frac{7832245928027511831470831255933048638190240273406751874875}{204426927783753713374839598142721895685731035032633914258381584} a^{15} + \frac{1908444433170434532599351134734600568861029162015627194713}{102213463891876856687419799071360947842865517516316957129190792} a^{14} - \frac{2639490531928594296645726319785534690724392205733972262314933}{204426927783753713374839598142721895685731035032633914258381584} a^{13} - \frac{1714399917064443095397096597955350999094404608323885166858735}{136284618522502475583226398761814597123820690021755942838921056} a^{12} + \frac{495605405075547728351383982153530638551473286255189003737333}{87611540478751591446359827775452241008170443585414534682163536} a^{11} - \frac{9310694971865099739017599341295756501944564531116248651632671}{613280783351261140124518794428165687057193105097901742775144752} a^{10} - \frac{3468593986621238041679507532873084681418198298547488675568427}{153320195837815285031129698607041421764298276274475435693786188} a^{9} + \frac{8501749627712672486099338771159819862601214721528611805327369}{408853855567507426749679196285443791371462070065267828516763168} a^{8} - \frac{75667387136808406089768137587946187749312941333900561871166905}{613280783351261140124518794428165687057193105097901742775144752} a^{7} + \frac{2108077591781759600923721161188643628500828919951981456872445}{34071154630625618895806599690453649280955172505438985709730264} a^{6} + \frac{2645968220983287167225180138019041502292156702849109127093393}{22714103087083745930537733126969099520636781670292657139820176} a^{5} - \frac{146973099350556924141251741588206636153921160549856584235851}{5562637490714386758499036684155697841788599592724732360772288} a^{4} + \frac{14581708721835648845597190305630228961526007482793444566119059}{34071154630625618895806599690453649280955172505438985709730264} a^{3} - \frac{601808287409043898824918600200001225673436185858993104177743}{136284618522502475583226398761814597123820690021755942838921056} a^{2} - \frac{4624641086930938562962789126102697378267542034238302000395837}{45428206174167491861075466253938199041273563340585314279640352} a - \frac{123089276031085556346704139102763738161017991500394723309305753}{272569237045004951166452797523629194247641380043511885677842112}$
Class group and class number
Not computed
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$S_3\times F_7$ (as 21T15):
| A solvable group of order 252 |
| The 21 conjugacy class representatives for $S_3\times F_7$ |
| Character table for $S_3\times F_7$ is not computed |
Intermediate fields
| 3.1.2184.1, 7.1.4520453669548992.29 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }$ | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{7}$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{7}$ | $21$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{10}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.7.6.1 | $x^{7} - 2$ | $7$ | $1$ | $6$ | $C_7:C_3$ | $[\ ]_{7}^{3}$ |
| 2.14.27.121 | $x^{14} - 4 x^{13} - 4 x^{12} + 8 x^{11} + 8 x^{10} - 6 x^{8} + 8 x^{7} + 6 x^{6} - 4 x^{5} - 2 x^{4} - 4 x^{3} + 4 x^{2} + 8 x + 6$ | $14$ | $1$ | $27$ | $(C_7:C_3) \times C_2$ | $[3]_{7}^{3}$ | |
| $3$ | 3.7.6.1 | $x^{7} - 3$ | $7$ | $1$ | $6$ | $F_7$ | $[\ ]_{7}^{6}$ |
| 3.14.13.1 | $x^{14} - 3$ | $14$ | $1$ | $13$ | $F_7 \times C_2$ | $[\ ]_{14}^{6}$ | |
| $7$ | 7.7.13.7 | $x^{7} + 252$ | $7$ | $1$ | $13$ | $F_7$ | $[13/6]_{6}$ |
| 7.14.27.51 | $x^{14} - 98 x^{12} - 147 x^{11} + 98 x^{8} + 77 x^{7} + 147 x^{6} + 98 x^{5} - 98 x^{4} - 98 x^{3} - 98 x^{2} - 147 x + 77$ | $14$ | $1$ | $27$ | $F_7$ | $[13/6]_{6}$ | |
| $13$ | $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |