Normalized defining polynomial
\( x^{21} - 7 x^{20} - 21 x^{19} + 427 x^{18} - 1099 x^{17} - 7371 x^{16} + 51877 x^{15} - 28459 x^{14} - 763602 x^{13} + 2834454 x^{12} - 3354876 x^{11} - 12561948 x^{10} - 9581544 x^{9} + 867775608 x^{8} - 2671533936 x^{7} + 2861475120 x^{6} - 10704143520 x^{5} + 18597509280 x^{4} + 4102539840 x^{3} + 39186141120 x^{2} - 60906867840 x + 19907441280 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[1, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(385299031450283695081389016328751512292325294080000000000000000000=2^{33}\cdot 3^{19}\cdot 5^{19}\cdot 7^{21}\cdot 167^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $1327.80$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 7, 167$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{12} a^{8} + \frac{1}{6} a^{7} + \frac{1}{6} a^{5} + \frac{1}{12} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{12} a^{9} + \frac{1}{6} a^{7} + \frac{1}{6} a^{6} - \frac{1}{4} a^{5} - \frac{1}{6} a^{4}$, $\frac{1}{12} a^{10} - \frac{1}{6} a^{7} - \frac{1}{4} a^{6} - \frac{1}{6} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{12} a^{11} + \frac{1}{12} a^{7} + \frac{1}{6} a^{5} + \frac{1}{6} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{24} a^{12} - \frac{1}{24} a^{10} - \frac{1}{24} a^{8} + \frac{1}{6} a^{7} + \frac{5}{24} a^{6} + \frac{1}{6} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{24} a^{13} - \frac{1}{24} a^{11} - \frac{1}{24} a^{9} - \frac{1}{8} a^{7} + \frac{1}{6} a^{6} + \frac{1}{6} a^{5} - \frac{1}{6} a^{4}$, $\frac{1}{360} a^{14} - \frac{1}{360} a^{13} - \frac{1}{60} a^{12} - \frac{1}{72} a^{11} - \frac{1}{36} a^{10} - \frac{1}{120} a^{9} - \frac{1}{180} a^{8} - \frac{7}{360} a^{7} + \frac{1}{8} a^{6} + \frac{1}{6} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{720} a^{15} - \frac{1}{720} a^{14} + \frac{1}{80} a^{13} - \frac{1}{144} a^{12} - \frac{5}{144} a^{11} - \frac{1}{240} a^{10} - \frac{17}{720} a^{9} - \frac{7}{720} a^{8} - \frac{1}{4} a^{7} + \frac{1}{6} a^{6} + \frac{1}{12} a^{5} + \frac{1}{6} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{1440} a^{16} - \frac{1}{1440} a^{15} - \frac{1}{1440} a^{14} - \frac{5}{288} a^{13} + \frac{1}{288} a^{12} + \frac{17}{1440} a^{11} + \frac{53}{1440} a^{10} + \frac{53}{1440} a^{9} - \frac{1}{144} a^{8} - \frac{13}{72} a^{7} + \frac{1}{6} a^{6} + \frac{1}{12} a^{5} + \frac{1}{6} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{4320} a^{17} - \frac{1}{4320} a^{16} - \frac{1}{1440} a^{15} + \frac{1}{4320} a^{14} + \frac{83}{4320} a^{13} + \frac{7}{480} a^{12} - \frac{137}{4320} a^{11} + \frac{119}{4320} a^{10} - \frac{7}{180} a^{9} + \frac{7}{240} a^{8} + \frac{43}{180} a^{7} + \frac{1}{24} a^{6} + \frac{1}{12} a^{5} - \frac{1}{4} a^{4} - \frac{1}{6} a^{3}$, $\frac{1}{8640} a^{18} - \frac{1}{8640} a^{17} - \frac{1}{2880} a^{16} + \frac{1}{8640} a^{15} - \frac{1}{8640} a^{14} + \frac{49}{2880} a^{13} - \frac{173}{8640} a^{12} + \frac{179}{8640} a^{11} + \frac{11}{720} a^{10} + \frac{1}{480} a^{9} + \frac{5}{144} a^{8} + \frac{47}{360} a^{7} + \frac{1}{12} a^{6} - \frac{1}{4} a^{4} - \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{43200} a^{19} - \frac{1}{43200} a^{18} - \frac{1}{43200} a^{17} + \frac{1}{8640} a^{16} - \frac{1}{1728} a^{15} + \frac{59}{43200} a^{14} - \frac{169}{43200} a^{13} - \frac{109}{43200} a^{12} + \frac{73}{2160} a^{11} - \frac{167}{4320} a^{10} - \frac{77}{2400} a^{9} + \frac{43}{3600} a^{8} + \frac{199}{1800} a^{7} - \frac{7}{60} a^{6} + \frac{1}{60} a^{5} + \frac{1}{12} a^{4} + \frac{1}{6} a^{3} - \frac{1}{10} a^{2} + \frac{1}{10} a - \frac{2}{5}$, $\frac{1}{1897591913341886541473143274118096733401882890407322765319039400040594905411200} a^{20} - \frac{11024950176647895600783290524472886341779059565164292538542547430792691447}{1897591913341886541473143274118096733401882890407322765319039400040594905411200} a^{19} - \frac{1245285364278433719284992897177412111939907545648407417238579516670529459}{29193721743721331407279127294124565129259736775497273312600606154470690852480} a^{18} + \frac{109119237974003524777401881926612712010287807034797307887810464205380456621}{1897591913341886541473143274118096733401882890407322765319039400040594905411200} a^{17} - \frac{4091916703376184998120942904052554755003287790859602293096123667325919109}{75903676533675461658925730964723869336075315616292910612761576001623796216448} a^{16} + \frac{303928761977116170535186232695675704217603247333428061870346886163293911499}{1897591913341886541473143274118096733401882890407322765319039400040594905411200} a^{15} + \frac{869984238638739572331714736914658788275129112508129650385135045271206574767}{1897591913341886541473143274118096733401882890407322765319039400040594905411200} a^{14} - \frac{468849322118253702466505339177023733473256097377949525940298263635129365081}{75903676533675461658925730964723869336075315616292910612761576001623796216448} a^{13} - \frac{1597431761679759438285799677899988206598938854952106402981714743214665376787}{237198989167735817684142909264762091675235361300915345664879925005074363176400} a^{12} - \frac{23291652688923812122438378192422290875083720276846077108901348699523671897}{878514774695317843274603367647267006204575412225612391351407129648423567320} a^{11} - \frac{2343934356411636197314984681426446927787022854678725603185784526262304464723}{59299747291933954421035727316190522918808840325228836416219981251268590794100} a^{10} - \frac{121100978565159844896987646666734678536149117512947529799395754682589026909}{9883291215322325736839287886031753819801473387538139402703330208544765132350} a^{9} - \frac{213439756172974966412008958227904777585752615360920171783002064679393415431}{15813265944515721178942860617650806111682357420061023044325328333671624211760} a^{8} + \frac{4268235733391828504681461130704715967989900162547877361100759349207612086739}{19766582430644651473678575772063507639602946775076278805406660417089530264700} a^{7} + \frac{71317623728511210224756050772432220536744487963235110037198082838363780916}{329443040510744191227976262867725127326715779584604646756777673618158837745} a^{6} + \frac{289406433611418139591625186044008512332099984987313967544329712659524174209}{2635544324085953529823810102941801018613726236676837174054221388945270701960} a^{5} + \frac{19325367881875422581839196867728723715851891339587086750388591979319154271}{131777216204297676491190505147090050930686311833841858702711069447263535098} a^{4} + \frac{49205223894097134006996033124608967667579120746108306503620202207778317703}{329443040510744191227976262867725127326715779584604646756777673618158837745} a^{3} + \frac{48554374013288449924794380434581906326915123673780532328482432519309738418}{109814346836914730409325420955908375775571926528201548918925891206052945915} a^{2} - \frac{6149175508624318795701046862584269834794591232098450419623702003514144842}{21962869367382946081865084191181675155114385305640309783785178241210589183} a + \frac{31006737318900635707356992809316703272188463726602519398542991358720953771}{109814346836914730409325420955908375775571926528201548918925891206052945915}$
Class group and class number
Not computed
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$S_3\times F_7$ (as 21T15):
| A solvable group of order 252 |
| The 21 conjugacy class representatives for $S_3\times F_7$ |
| Character table for $S_3\times F_7$ is not computed |
Intermediate fields
| 3.1.20040.1, 7.1.600362847000000.22 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{10}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/29.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }$ | ${\href{/LocalNumberField/43.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.7.6.1 | $x^{7} - 2$ | $7$ | $1$ | $6$ | $C_7:C_3$ | $[\ ]_{7}^{3}$ |
| 2.14.27.121 | $x^{14} - 4 x^{13} - 4 x^{12} + 8 x^{11} + 8 x^{10} - 6 x^{8} + 8 x^{7} + 6 x^{6} - 4 x^{5} - 2 x^{4} - 4 x^{3} + 4 x^{2} + 8 x + 6$ | $14$ | $1$ | $27$ | $(C_7:C_3) \times C_2$ | $[3]_{7}^{3}$ | |
| $3$ | 3.7.6.1 | $x^{7} - 3$ | $7$ | $1$ | $6$ | $F_7$ | $[\ ]_{7}^{6}$ |
| 3.14.13.1 | $x^{14} - 3$ | $14$ | $1$ | $13$ | $F_7 \times C_2$ | $[\ ]_{14}^{6}$ | |
| $5$ | 5.7.6.1 | $x^{7} - 5$ | $7$ | $1$ | $6$ | $F_7$ | $[\ ]_{7}^{6}$ |
| 5.14.13.2 | $x^{14} + 10$ | $14$ | $1$ | $13$ | $F_7 \times C_2$ | $[\ ]_{14}^{6}$ | |
| 7 | Data not computed | ||||||
| $167$ | $\Q_{167}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 167.2.1.1 | $x^{2} - 167$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 167.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 167.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 167.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 167.4.2.1 | $x^{4} + 1503 x^{2} + 697225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 167.4.2.1 | $x^{4} + 1503 x^{2} + 697225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 167.4.2.1 | $x^{4} + 1503 x^{2} + 697225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |