Normalized defining polynomial
\( x^{21} - 28 x^{17} - 14 x^{16} + 189 x^{15} - 418 x^{14} - 2009 x^{13} + 1960 x^{12} + 7406 x^{11} - 5600 x^{10} - 13370 x^{9} + 23842 x^{8} + 70415 x^{7} + 78400 x^{6} + 40278 x^{5} - 14868 x^{4} - 24325 x^{3} - 490 x^{2} + 3136 x - 1128 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[1, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(309663421430338978631523663046883017=7^{21}\cdot 31^{7}\cdot 67^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $48.98$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 31, 67$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{3} a^{8} + \frac{1}{3} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{3} a^{9} - \frac{1}{3} a$, $\frac{1}{6} a^{10} - \frac{1}{6} a^{7} + \frac{1}{6} a^{6} - \frac{1}{3} a^{5} + \frac{1}{6} a^{3} - \frac{1}{3} a^{2} - \frac{1}{6} a$, $\frac{1}{6} a^{11} - \frac{1}{6} a^{8} - \frac{1}{6} a^{7} + \frac{1}{3} a^{5} + \frac{1}{6} a^{4} - \frac{1}{2} a^{2} - \frac{1}{3} a$, $\frac{1}{6} a^{12} - \frac{1}{6} a^{9} - \frac{1}{6} a^{8} + \frac{1}{3} a^{6} + \frac{1}{6} a^{5} - \frac{1}{2} a^{3} - \frac{1}{3} a^{2}$, $\frac{1}{18} a^{13} + \frac{1}{18} a^{12} - \frac{1}{18} a^{11} - \frac{1}{18} a^{10} + \frac{1}{9} a^{9} - \frac{1}{9} a^{8} - \frac{1}{18} a^{7} - \frac{1}{18} a^{6} - \frac{7}{18} a^{5} + \frac{2}{9} a^{4} - \frac{7}{18} a^{3} - \frac{7}{18} a^{2} + \frac{2}{9} a + \frac{1}{3}$, $\frac{1}{18} a^{14} + \frac{1}{18} a^{12} - \frac{1}{18} a^{9} - \frac{1}{9} a^{8} - \frac{1}{6} a^{7} + \frac{1}{6} a^{6} + \frac{4}{9} a^{5} + \frac{7}{18} a^{4} - \frac{1}{3} a^{3} + \frac{5}{18} a^{2} - \frac{7}{18} a - \frac{1}{3}$, $\frac{1}{18} a^{15} - \frac{1}{18} a^{12} + \frac{1}{18} a^{11} + \frac{1}{9} a^{9} - \frac{1}{18} a^{8} - \frac{1}{9} a^{7} - \frac{1}{6} a^{6} + \frac{1}{9} a^{5} + \frac{4}{9} a^{4} - \frac{1}{3} a^{2} - \frac{2}{9} a - \frac{1}{3}$, $\frac{1}{18} a^{16} - \frac{1}{18} a^{12} - \frac{1}{18} a^{11} + \frac{1}{18} a^{10} - \frac{1}{9} a^{9} - \frac{1}{18} a^{8} + \frac{1}{9} a^{7} + \frac{7}{18} a^{6} - \frac{4}{9} a^{5} + \frac{2}{9} a^{4} + \frac{4}{9} a^{3} + \frac{1}{18} a^{2} - \frac{4}{9} a + \frac{1}{3}$, $\frac{1}{18} a^{17} + \frac{1}{18} a^{9} - \frac{1}{6} a^{7} - \frac{1}{6} a^{5} - \frac{1}{3} a^{4} + \frac{1}{6} a^{3} - \frac{1}{2} a^{2} + \frac{1}{18} a + \frac{1}{3}$, $\frac{1}{54} a^{18} - \frac{1}{54} a^{17} + \frac{1}{54} a^{16} + \frac{1}{54} a^{15} - \frac{1}{54} a^{14} + \frac{1}{54} a^{13} + \frac{2}{27} a^{12} - \frac{2}{27} a^{11} + \frac{2}{27} a^{10} + \frac{1}{27} a^{9} - \frac{1}{27} a^{8} - \frac{7}{54} a^{7} - \frac{1}{9} a^{6} - \frac{1}{9} a^{5} + \frac{1}{6} a^{4} - \frac{4}{27} a^{3} + \frac{10}{27} a^{2} + \frac{13}{54} a + \frac{1}{9}$, $\frac{1}{54} a^{19} - \frac{1}{54} a^{16} - \frac{1}{54} a^{13} - \frac{1}{18} a^{12} - \frac{1}{9} a^{9} - \frac{1}{18} a^{8} + \frac{5}{54} a^{7} - \frac{7}{18} a^{5} - \frac{13}{27} a^{4} + \frac{7}{18} a^{3} - \frac{1}{2} a^{2} - \frac{13}{27} a + \frac{1}{9}$, $\frac{1}{19573647663371609814637986445716} a^{20} - \frac{44972911082907955600776839902}{4893411915842902453659496611429} a^{19} + \frac{22781730022676920678140670061}{4893411915842902453659496611429} a^{18} + \frac{42493810167740393527846888613}{1631137305280967484553165537143} a^{17} + \frac{5499942126181535688021056801}{1631137305280967484553165537143} a^{16} - \frac{127156104690005364247337003758}{4893411915842902453659496611429} a^{15} - \frac{134954187822980497885398379039}{6524549221123869938212662148572} a^{14} + \frac{8146991143914692851953339557}{362474956729103885456259008254} a^{13} - \frac{790305127037826970703254143097}{19573647663371609814637986445716} a^{12} - \frac{7021844508752287057440408013}{9786823831685804907318993222858} a^{11} - \frac{24863537461910864318047109423}{315703994570509835719967523318} a^{10} + \frac{900096350630493991922147960495}{9786823831685804907318993222858} a^{9} + \frac{515467576716831904913437779463}{4893411915842902453659496611429} a^{8} - \frac{538729096394024313126979867549}{4893411915842902453659496611429} a^{7} - \frac{1995961224635576101915660834843}{6524549221123869938212662148572} a^{6} - \frac{913428247295428110034198403753}{4893411915842902453659496611429} a^{5} - \frac{1470490742660630255288391789031}{4893411915842902453659496611429} a^{4} - \frac{408304032560603539227597143014}{4893411915842902453659496611429} a^{3} + \frac{6998152174297426068023671159361}{19573647663371609814637986445716} a^{2} - \frac{28890234856984199058162444176}{4893411915842902453659496611429} a - \frac{499252593249760734829246279531}{1631137305280967484553165537143}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 7220623158.01 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 111132 |
| The 70 conjugacy class representatives for t21n102 are not computed |
| Character table for t21n102 is not computed |
Intermediate fields
| 3.1.31.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/2.3.0.1}{3} }$ | ${\href{/LocalNumberField/3.2.0.1}{2} }^{10}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | ${\href{/LocalNumberField/13.14.0.1}{14} }{,}\,{\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | ${\href{/LocalNumberField/17.14.0.1}{14} }{,}\,{\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | $18{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }$ | ${\href{/LocalNumberField/23.14.0.1}{14} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | R | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | $18{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 7 | Data not computed | ||||||
| $31$ | $\Q_{31}$ | $x + 7$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 31.2.1.2 | $x^{2} + 217$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 31.6.0.1 | $x^{6} - 2 x + 3$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 31.12.6.1 | $x^{12} + 178746 x^{6} - 114516604 x^{2} + 7987533129$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |
| $67$ | $\Q_{67}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{67}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{67}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 67.3.0.1 | $x^{3} - x + 16$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 67.3.0.1 | $x^{3} - x + 16$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 67.3.2.2 | $x^{3} + 268$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 67.3.0.1 | $x^{3} - x + 16$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 67.3.0.1 | $x^{3} - x + 16$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 67.3.2.2 | $x^{3} + 268$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |