Normalized defining polynomial
\( x^{21} + 21 x^{19} - 2 x^{18} + 209 x^{17} - 26 x^{16} + 1081 x^{15} - 450 x^{14} + 2345 x^{13} - 2990 x^{12} - 107 x^{11} - 5360 x^{10} - 1817 x^{9} + 13424 x^{8} + 28897 x^{7} + 59776 x^{6} + 72068 x^{5} + 63024 x^{4} + 32992 x^{3} + 7616 x^{2} + 576 x + 64 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[1, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(297767057903624960000000000000000000=2^{26}\cdot 5^{19}\cdot 7^{17}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $48.89$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{14} - \frac{1}{2} a^{12} - \frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{17} + \frac{1}{4} a^{15} - \frac{1}{2} a^{14} + \frac{1}{4} a^{13} - \frac{1}{2} a^{12} + \frac{1}{4} a^{11} - \frac{1}{2} a^{10} + \frac{1}{4} a^{9} - \frac{1}{2} a^{8} + \frac{1}{4} a^{7} - \frac{1}{4} a^{5} + \frac{1}{4} a^{3}$, $\frac{1}{24} a^{18} + \frac{1}{24} a^{16} - \frac{5}{12} a^{15} - \frac{1}{8} a^{14} - \frac{1}{12} a^{13} - \frac{1}{8} a^{12} - \frac{1}{12} a^{11} - \frac{1}{8} a^{10} + \frac{1}{12} a^{9} - \frac{7}{24} a^{8} + \frac{11}{24} a^{6} - \frac{1}{3} a^{5} - \frac{1}{8} a^{4} - \frac{1}{3} a^{3} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{48} a^{19} + \frac{1}{48} a^{17} - \frac{5}{24} a^{16} - \frac{1}{16} a^{15} + \frac{11}{24} a^{14} + \frac{7}{16} a^{13} - \frac{1}{24} a^{12} + \frac{7}{16} a^{11} + \frac{1}{24} a^{10} + \frac{17}{48} a^{9} - \frac{13}{48} a^{7} - \frac{1}{6} a^{6} + \frac{7}{16} a^{5} - \frac{1}{6} a^{4} - \frac{1}{6} a^{2} - \frac{1}{3} a$, $\frac{1}{7440802033925902251331213732125384096} a^{20} - \frac{13423536120860434815804630378162871}{1860200508481475562832803433031346024} a^{19} - \frac{69175043431590557353184973480373303}{7440802033925902251331213732125384096} a^{18} - \frac{458618434644703813612905608983058623}{3720401016962951125665606866062692048} a^{17} - \frac{777151036444819041343401231998917123}{7440802033925902251331213732125384096} a^{16} + \frac{14958960582323196342549964670728179}{1240133672320983708555202288687564016} a^{15} + \frac{3482918404487676217358458286131130549}{7440802033925902251331213732125384096} a^{14} + \frac{40924482707939025233456965421513353}{286184693612534701974277451235591696} a^{13} - \frac{558589074608128078586141369024207035}{7440802033925902251331213732125384096} a^{12} + \frac{395413220006626284755057496971335941}{1240133672320983708555202288687564016} a^{11} - \frac{1218612720420036442869787582303587573}{2480267344641967417110404577375128032} a^{10} - \frac{18958374279058514669661696141723959}{47697448935422450329046241872598616} a^{9} + \frac{2019742579311695925523986288926938843}{7440802033925902251331213732125384096} a^{8} + \frac{274862911217291360283174591439498847}{1860200508481475562832803433031346024} a^{7} + \frac{461034391872830264028668377474736317}{7440802033925902251331213732125384096} a^{6} - \frac{854119896202595236297343439102695467}{1860200508481475562832803433031346024} a^{5} + \frac{346756577912525464323433303904117029}{930100254240737781416401716515673012} a^{4} + \frac{5201726128875489544718790254764457}{465050127120368890708200858257836506} a^{3} - \frac{61259511561073803418673215576884337}{232525063560184445354100429128918253} a^{2} + \frac{97634435332045682729832776879621143}{232525063560184445354100429128918253} a + \frac{21345694356883203065026487432433916}{232525063560184445354100429128918253}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2812507698.960895 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$S_3\times F_7$ (as 21T15):
| A solvable group of order 252 |
| The 21 conjugacy class representatives for $S_3\times F_7$ |
| Character table for $S_3\times F_7$ is not computed |
Intermediate fields
| 3.1.980.1, 7.1.16807000000.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }$ | R | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{10}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{7}$ | $21$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.7.6.1 | $x^{7} - 2$ | $7$ | $1$ | $6$ | $C_7:C_3$ | $[\ ]_{7}^{3}$ |
| 2.14.20.10 | $x^{14} + 2 x^{12} + 2 x^{11} + 4 x^{10} + 2 x^{8} - 2 x^{7} - 2 x^{6} + 4 x^{4} + 4 x^{3} - 2$ | $14$ | $1$ | $20$ | $(C_7:C_3) \times C_2$ | $[2]_{7}^{3}$ | |
| $5$ | 5.7.6.1 | $x^{7} - 5$ | $7$ | $1$ | $6$ | $F_7$ | $[\ ]_{7}^{6}$ |
| 5.14.13.1 | $x^{14} - 5$ | $14$ | $1$ | $13$ | $F_7 \times C_2$ | $[\ ]_{14}^{6}$ | |
| 7 | Data not computed | ||||||