Normalized defining polynomial
\( x^{21} - 7 x^{20} + 7 x^{19} + 427 x^{18} - 2359 x^{17} + 973 x^{16} + 76713 x^{15} - 322251 x^{14} - 51030 x^{13} + 7422478 x^{12} - 25300156 x^{11} - 7171388 x^{10} + 387981832 x^{9} - 261657928 x^{8} - 2718060368 x^{7} + 14603743728 x^{6} - 41439308064 x^{5} + 7269519264 x^{4} + 196647632832 x^{3} - 9805798464 x^{2} - 433958835072 x + 1329014280576 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[1, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2850782826128958048988669116723104997174540074367395561472=2^{33}\cdot 3^{18}\cdot 7^{21}\cdot 1063^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $544.44$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 1063$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} - \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{4} a^{7} + \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{8} a^{8} - \frac{1}{4} a^{5} - \frac{1}{8} a^{4} - \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{8} a^{9} + \frac{1}{8} a^{5} - \frac{1}{4} a^{3}$, $\frac{1}{8} a^{10} - \frac{1}{8} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{16} a^{11} - \frac{1}{16} a^{10} + \frac{1}{16} a^{7} - \frac{1}{16} a^{6} + \frac{1}{8} a^{5} - \frac{1}{8} a^{4} + \frac{1}{4} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{32} a^{12} - \frac{1}{32} a^{10} + \frac{1}{32} a^{8} + \frac{1}{32} a^{6} - \frac{1}{4} a^{5} - \frac{3}{16} a^{4} - \frac{1}{4} a^{3} - \frac{1}{8} a^{2} - \frac{1}{2} a + \frac{1}{4}$, $\frac{1}{32} a^{13} - \frac{1}{32} a^{11} + \frac{1}{32} a^{9} + \frac{1}{32} a^{7} + \frac{1}{16} a^{5} + \frac{1}{8} a^{3} - \frac{1}{4} a$, $\frac{1}{96} a^{14} + \frac{1}{96} a^{13} - \frac{1}{96} a^{11} - \frac{1}{24} a^{10} - \frac{1}{32} a^{9} - \frac{1}{48} a^{8} + \frac{1}{96} a^{7} - \frac{3}{32} a^{6} + \frac{1}{16} a^{5} + \frac{3}{16} a^{4} - \frac{1}{8} a^{3} + \frac{3}{8} a^{2} - \frac{1}{4} a + \frac{1}{4}$, $\frac{1}{576} a^{15} - \frac{1}{576} a^{14} + \frac{1}{576} a^{13} - \frac{7}{576} a^{12} + \frac{7}{576} a^{11} - \frac{25}{576} a^{10} + \frac{19}{576} a^{9} + \frac{23}{576} a^{8} + \frac{7}{144} a^{7} - \frac{7}{96} a^{6} + \frac{1}{24} a^{5} - \frac{11}{48} a^{4} - \frac{1}{3} a^{3} - \frac{7}{24} a^{2} + \frac{5}{12} a - \frac{1}{6}$, $\frac{1}{1152} a^{16} - \frac{1}{1152} a^{15} - \frac{5}{1152} a^{14} - \frac{13}{1152} a^{13} - \frac{11}{1152} a^{12} - \frac{19}{1152} a^{11} - \frac{11}{1152} a^{10} + \frac{41}{1152} a^{9} - \frac{25}{576} a^{8} + \frac{1}{12} a^{7} - \frac{1}{96} a^{6} + \frac{5}{48} a^{5} - \frac{11}{48} a^{4} - \frac{5}{24} a^{3} - \frac{5}{12} a^{2} - \frac{5}{24} a$, $\frac{1}{2304} a^{17} - \frac{1}{2304} a^{16} + \frac{1}{2304} a^{15} + \frac{5}{2304} a^{14} - \frac{17}{2304} a^{13} - \frac{25}{2304} a^{12} - \frac{29}{2304} a^{11} - \frac{25}{2304} a^{10} + \frac{25}{576} a^{9} + \frac{13}{384} a^{8} + \frac{1}{32} a^{7} - \frac{1}{24} a^{6} - \frac{1}{48} a^{5} + \frac{7}{48} a^{4} - \frac{7}{48} a^{3} + \frac{7}{48} a^{2} + \frac{1}{4} a + \frac{1}{8}$, $\frac{1}{4608} a^{18} - \frac{1}{4608} a^{17} + \frac{1}{4608} a^{16} + \frac{1}{4608} a^{15} + \frac{11}{4608} a^{14} - \frac{5}{4608} a^{13} - \frac{1}{4608} a^{12} + \frac{67}{4608} a^{11} + \frac{31}{576} a^{10} - \frac{35}{2304} a^{9} - \frac{17}{1152} a^{8} - \frac{5}{576} a^{7} - \frac{11}{96} a^{6} + \frac{1}{48} a^{5} + \frac{7}{96} a^{4} + \frac{17}{96} a^{3} + \frac{1}{3} a^{2} - \frac{13}{48} a + \frac{11}{24}$, $\frac{1}{9216} a^{19} - \frac{1}{9216} a^{18} - \frac{1}{9216} a^{17} - \frac{1}{9216} a^{16} + \frac{5}{9216} a^{15} - \frac{35}{9216} a^{14} - \frac{115}{9216} a^{13} - \frac{71}{9216} a^{12} + \frac{115}{4608} a^{11} + \frac{13}{288} a^{10} - \frac{1}{1152} a^{9} - \frac{31}{768} a^{8} - \frac{19}{288} a^{7} + \frac{11}{192} a^{6} - \frac{17}{192} a^{5} + \frac{5}{192} a^{4} + \frac{37}{96} a^{3} + \frac{5}{24} a^{2} + \frac{1}{4} a + \frac{19}{48}$, $\frac{1}{668602713033610191352523576701391780797768709748656046663207306748602259194932343668359382016} a^{20} - \frac{15673556158530227443698404800310224850280506678877654314101663389213894756853544366967133}{668602713033610191352523576701391780797768709748656046663207306748602259194932343668359382016} a^{19} - \frac{34495126665523268863632336602367691571945800560077690900653393402371333549761226429959813}{668602713033610191352523576701391780797768709748656046663207306748602259194932343668359382016} a^{18} + \frac{105924710867411818903674804322423172276905172873931488889402935421162497767047913400437171}{668602713033610191352523576701391780797768709748656046663207306748602259194932343668359382016} a^{17} + \frac{48157293117864077369784614408614345903729748049060563807643149034542514913114353821464385}{668602713033610191352523576701391780797768709748656046663207306748602259194932343668359382016} a^{16} + \frac{1970795408376594315626776621769379051751630613141152114976205645260481235596629755100161}{668602713033610191352523576701391780797768709748656046663207306748602259194932343668359382016} a^{15} - \frac{1138036112679872139894252656575827916586984684430447327185174115427123872849076884056760655}{668602713033610191352523576701391780797768709748656046663207306748602259194932343668359382016} a^{14} - \frac{109543184279275921712154247045708534023839685478859525192198869558869776755787536586275187}{668602713033610191352523576701391780797768709748656046663207306748602259194932343668359382016} a^{13} - \frac{798911646273702247326508345156517869948227390226984721384790494507866816915030144908753683}{334301356516805095676261788350695890398884354874328023331603653374301129597466171834179691008} a^{12} + \frac{1282720007975274620816154576065514482880236418393225977470044902775311291107891337572741885}{83575339129201273919065447087673972599721088718582005832900913343575282399366542958544922752} a^{11} + \frac{1194911611027168837855885932346220193337052023003475725354271778323878871270554676690347565}{83575339129201273919065447087673972599721088718582005832900913343575282399366542958544922752} a^{10} + \frac{2665568477093239263903096207175914001458608843892003422434934832261076945078825041439090853}{167150678258402547838130894175347945199442177437164011665801826687150564798733085917089845504} a^{9} + \frac{21789764217031132511338339573659054626479378711085952339040468137501305588224353155182067}{1741152898525026539980530147659874429160856014970458454852102361324485049986802978303019224} a^{8} - \frac{883179099665405907801750738741829623961924440484962329530277141891403095465728060926187375}{13929223188200212319844241181278995433286848119763667638816818890595880399894423826424153792} a^{7} + \frac{414085039795906984369792997102103032303086216444110670784485165677117195694343641987667977}{13929223188200212319844241181278995433286848119763667638816818890595880399894423826424153792} a^{6} + \frac{1159896613395630788002910935686080263908158604290811410794593257212271497046627515664243945}{13929223188200212319844241181278995433286848119763667638816818890595880399894423826424153792} a^{5} + \frac{1663295848712235441398731415582516621380372523779950609698056445413698899108089305267237601}{6964611594100106159922120590639497716643424059881833819408409445297940199947211913212076896} a^{4} - \frac{270079757506071869379303248362646243065218126961788492474961607287007376009574983323198995}{1741152898525026539980530147659874429160856014970458454852102361324485049986802978303019224} a^{3} + \frac{621822366877882866071069471994292787130745705828604518689660680643522940627305317918625193}{1741152898525026539980530147659874429160856014970458454852102361324485049986802978303019224} a^{2} - \frac{347864426575852717532402949022285231240275449087630325711380876083010548714600898070114753}{1160768599016684359987020098439916286107237343313638969901401574216323366657868652202012816} a + \frac{127190443252546954353772660048987941605317453648882264524922354731603742889550607885307383}{290192149754171089996755024609979071526809335828409742475350393554080841664467163050503204}$
Class group and class number
Not computed
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$S_3\times F_7$ (as 21T15):
| A solvable group of order 252 |
| The 21 conjugacy class representatives for $S_3\times F_7$ |
| Character table for $S_3\times F_7$ is not computed |
Intermediate fields
| 3.1.8504.1, 7.1.38423222208.4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{10}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{3}$ | $21$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{10}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | ${\href{/LocalNumberField/43.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.7.6.1 | $x^{7} - 2$ | $7$ | $1$ | $6$ | $C_7:C_3$ | $[\ ]_{7}^{3}$ |
| 2.14.27.213 | $x^{14} + 2 x^{12} + 4 x^{11} - 2 x^{10} + 2 x^{8} + 4 x^{6} + 4 x^{5} + 4 x^{2} - 2$ | $14$ | $1$ | $27$ | $(C_7:C_3) \times C_2$ | $[3]_{7}^{3}$ | |
| $3$ | 3.7.6.1 | $x^{7} - 3$ | $7$ | $1$ | $6$ | $F_7$ | $[\ ]_{7}^{6}$ |
| 3.7.6.1 | $x^{7} - 3$ | $7$ | $1$ | $6$ | $F_7$ | $[\ ]_{7}^{6}$ | |
| 3.7.6.1 | $x^{7} - 3$ | $7$ | $1$ | $6$ | $F_7$ | $[\ ]_{7}^{6}$ | |
| 7 | Data not computed | ||||||
| 1063 | Data not computed | ||||||