Normalized defining polynomial
\( x^{21} - 7 x^{20} + 35 x^{19} - 112 x^{18} + 266 x^{17} - 490 x^{16} + 693 x^{15} - 1355 x^{14} + 3360 x^{13} - 7224 x^{12} + 12166 x^{11} - 16709 x^{10} + 21700 x^{9} - 32417 x^{8} + 39987 x^{7} - 39067 x^{6} + 26600 x^{5} - 12320 x^{4} + 4389 x^{3} - 1575 x^{2} + 945 x - 405 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[1, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2807535013090453863383795166015625=5^{14}\cdot 7^{28}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $39.15$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{3} a^{9} - \frac{1}{3} a$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{3}$, $\frac{1}{3} a^{12} - \frac{1}{3} a^{4}$, $\frac{1}{3} a^{13} - \frac{1}{3} a^{5}$, $\frac{1}{63} a^{14} + \frac{1}{9} a^{13} + \frac{1}{9} a^{12} - \frac{1}{9} a^{11} + \frac{1}{9} a^{10} - \frac{1}{3} a^{8} + \frac{1}{7} a^{7} - \frac{1}{9} a^{6} - \frac{4}{9} a^{5} + \frac{2}{9} a^{4} - \frac{2}{9} a^{3} - \frac{4}{9} a^{2} - \frac{1}{3} a - \frac{3}{7}$, $\frac{1}{315} a^{15} + \frac{1}{15} a^{13} + \frac{1}{45} a^{12} - \frac{1}{45} a^{11} - \frac{1}{45} a^{10} + \frac{52}{105} a^{8} - \frac{19}{45} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{5} - \frac{16}{45} a^{4} + \frac{19}{45} a^{3} + \frac{2}{9} a^{2} - \frac{2}{7} a$, $\frac{1}{315} a^{16} + \frac{1}{315} a^{14} - \frac{4}{45} a^{13} - \frac{2}{15} a^{12} + \frac{4}{45} a^{11} - \frac{1}{9} a^{10} + \frac{17}{105} a^{9} - \frac{4}{45} a^{8} + \frac{2}{21} a^{7} + \frac{1}{9} a^{6} + \frac{4}{45} a^{5} + \frac{1}{5} a^{4} + \frac{4}{9} a^{3} + \frac{10}{63} a^{2} - \frac{1}{3} a - \frac{2}{7}$, $\frac{1}{315} a^{17} + \frac{2}{315} a^{14} + \frac{2}{15} a^{13} + \frac{1}{15} a^{12} - \frac{4}{45} a^{11} - \frac{47}{315} a^{10} - \frac{4}{45} a^{9} - \frac{2}{5} a^{8} + \frac{41}{105} a^{7} - \frac{11}{45} a^{6} + \frac{1}{5} a^{5} - \frac{1}{5} a^{4} - \frac{83}{315} a^{3} - \frac{2}{9} a^{2} + \frac{3}{7}$, $\frac{1}{945} a^{18} + \frac{1}{945} a^{17} - \frac{1}{945} a^{16} + \frac{1}{945} a^{15} + \frac{1}{315} a^{14} - \frac{1}{9} a^{13} + \frac{1}{15} a^{12} - \frac{26}{945} a^{11} - \frac{103}{945} a^{10} + \frac{22}{189} a^{9} - \frac{236}{945} a^{8} + \frac{419}{945} a^{7} + \frac{1}{45} a^{6} + \frac{7}{45} a^{5} + \frac{32}{105} a^{4} + \frac{344}{945} a^{3} + \frac{2}{21} a^{2} + \frac{5}{21} a - \frac{2}{7}$, $\frac{1}{208845} a^{19} - \frac{2}{4641} a^{18} - \frac{311}{208845} a^{17} + \frac{62}{208845} a^{16} + \frac{40}{41769} a^{15} + \frac{146}{23205} a^{14} - \frac{304}{3315} a^{13} + \frac{34498}{208845} a^{12} - \frac{4541}{208845} a^{11} - \frac{31}{273} a^{10} + \frac{17666}{208845} a^{9} + \frac{69742}{208845} a^{8} + \frac{101356}{208845} a^{7} - \frac{44}{255} a^{6} + \frac{5248}{69615} a^{5} + \frac{87977}{208845} a^{4} + \frac{44377}{208845} a^{3} - \frac{4187}{13923} a^{2} - \frac{25}{91} a + \frac{90}{1547}$, $\frac{1}{23838698252740166694854865} a^{20} + \frac{2588398102915854092}{1254668329091587720781835} a^{19} + \frac{180761284815865357654}{507206345802982270103295} a^{18} + \frac{33547081259788491149}{1254668329091587720781835} a^{17} + \frac{381174600435484865920}{250933665818317544156367} a^{16} - \frac{4524603732312943752238}{3405528321820023813550695} a^{15} + \frac{50699500859660353075702}{7946232750913388898284955} a^{14} - \frac{1607669055243318205613}{116286332940195935096853} a^{13} + \frac{141375327629758138816457}{882914750101487655364995} a^{12} - \frac{57881991994445202423386}{611248673147183761406535} a^{11} + \frac{1937801545059915629476666}{23838698252740166694854865} a^{10} - \frac{440274597039071444243411}{23838698252740166694854865} a^{9} + \frac{1089062695031138790536341}{3405528321820023813550695} a^{8} - \frac{373384733848599719469283}{1402276367808245099697345} a^{7} + \frac{3546523592497731582090233}{7946232750913388898284955} a^{6} + \frac{479374250360843454625921}{4767739650548033338970973} a^{5} + \frac{3734133859793052408131423}{23838698252740166694854865} a^{4} + \frac{83029382772190434842044}{1254668329091587720781835} a^{3} - \frac{58290527673636075494}{2040111104213963773629} a^{2} + \frac{28032487093250014087364}{75678407151556084745571} a + \frac{71141271643077812158259}{176582950020297531072999}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 859506502.583 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 42 |
| The 12 conjugacy class representatives for $D_{21}$ |
| Character table for $D_{21}$ |
Intermediate fields
| 3.1.175.1, 7.1.40353607.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $21$ | ${\href{/LocalNumberField/3.2.0.1}{2} }^{10}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }$ | R | R | $21$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{10}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{10}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{10}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | $21$ | $21$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{10}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | $21$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{10}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | $21$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{10}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{10}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.3.2.1 | $x^{3} - 5$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 5.6.4.1 | $x^{6} + 25 x^{3} + 200$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 5.6.4.1 | $x^{6} + 25 x^{3} + 200$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 5.6.4.1 | $x^{6} + 25 x^{3} + 200$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 7 | Data not computed | ||||||