Normalized defining polynomial
\( x^{21} - 6 x^{20} + 12 x^{19} - 4 x^{18} - 7 x^{17} - 47 x^{16} + 158 x^{15} - 112 x^{14} - 277 x^{13} + 800 x^{12} - 683 x^{11} - 929 x^{10} + 3169 x^{9} - 2711 x^{8} - 1350 x^{7} + 4467 x^{6} - 2049 x^{5} - 2691 x^{4} + 4230 x^{3} - 2223 x^{2} + 378 x + 81 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[1, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(265283078340996577927735640721=3^{16}\cdot 151^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $25.18$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 151$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{3} a^{13} + \frac{1}{3} a^{10} - \frac{1}{3} a^{9} + \frac{1}{3} a^{8} + \frac{1}{3} a^{7} + \frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3}$, $\frac{1}{3} a^{14} + \frac{1}{3} a^{11} - \frac{1}{3} a^{10} + \frac{1}{3} a^{9} + \frac{1}{3} a^{8} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} + \frac{1}{3} a^{4}$, $\frac{1}{3} a^{15} + \frac{1}{3} a^{12} - \frac{1}{3} a^{11} + \frac{1}{3} a^{10} + \frac{1}{3} a^{9} + \frac{1}{3} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5}$, $\frac{1}{3} a^{16} - \frac{1}{3} a^{12} + \frac{1}{3} a^{11} + \frac{1}{3} a^{9} + \frac{1}{3} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3} a^{3}$, $\frac{1}{3} a^{17} + \frac{1}{3} a^{12} - \frac{1}{3} a^{10} - \frac{1}{3} a^{9} + \frac{1}{3} a^{8} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} + \frac{1}{3} a^{3}$, $\frac{1}{3} a^{18} - \frac{1}{3} a^{11} + \frac{1}{3} a^{10} - \frac{1}{3} a^{9} + \frac{1}{3} a^{8} + \frac{1}{3} a^{7} - \frac{1}{3} a^{5} - \frac{1}{3} a^{3}$, $\frac{1}{1359} a^{19} + \frac{24}{151} a^{18} - \frac{16}{151} a^{17} - \frac{223}{1359} a^{16} + \frac{140}{1359} a^{15} - \frac{86}{1359} a^{14} + \frac{176}{1359} a^{13} + \frac{494}{1359} a^{12} - \frac{220}{1359} a^{11} + \frac{365}{1359} a^{10} - \frac{419}{1359} a^{9} + \frac{43}{1359} a^{8} - \frac{311}{1359} a^{7} - \frac{425}{1359} a^{6} + \frac{80}{453} a^{5} - \frac{164}{453} a^{4} - \frac{199}{453} a^{3} + \frac{12}{151} a^{2} + \frac{44}{151} a - \frac{15}{151}$, $\frac{1}{316882787014905031148351643} a^{20} - \frac{3310464279793964446164}{11736399519070556709198209} a^{19} - \frac{9992864031174748013684168}{105627595671635010382783881} a^{18} + \frac{14760585985718040755975492}{316882787014905031148351643} a^{17} + \frac{25376458894692644777450423}{316882787014905031148351643} a^{16} + \frac{17158571858635873565256658}{316882787014905031148351643} a^{15} + \frac{44444501153248089786660578}{316882787014905031148351643} a^{14} + \frac{49370059546986559917273029}{316882787014905031148351643} a^{13} + \frac{71716557567480491581206062}{316882787014905031148351643} a^{12} - \frac{12094519986676755666791251}{316882787014905031148351643} a^{11} - \frac{150501962365092518495232848}{316882787014905031148351643} a^{10} + \frac{2655496661586269489720402}{5978920509715189266950031} a^{9} - \frac{18736158809931152155895684}{316882787014905031148351643} a^{8} + \frac{8676579788938021061431657}{24375599001146540857565511} a^{7} - \frac{11403263866115255987976118}{105627595671635010382783881} a^{6} + \frac{42960611655561659985361639}{105627595671635010382783881} a^{5} + \frac{48192709850650391958231838}{105627595671635010382783881} a^{4} + \frac{7767729405833692810316915}{35209198557211670127594627} a^{3} + \frac{15785485074464780891150684}{35209198557211670127594627} a^{2} - \frac{10620188920526453244251086}{35209198557211670127594627} a - \frac{3234417554537289507751730}{11736399519070556709198209}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2275997.37039 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 30618 |
| The 207 conjugacy class representatives for t21n75 are not computed |
| Character table for t21n75 is not computed |
Intermediate fields
| 7.1.3442951.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $21$ | R | $21$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | $21$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | $21$ | $21$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | $21$ | $21$ | ${\href{/LocalNumberField/37.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | $21$ | $21$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | $21$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 3.6.8.10 | $x^{6} + 6 x^{5} + 36$ | $3$ | $2$ | $8$ | $S_3\times C_3$ | $[2, 2]^{2}$ | |
| 3.6.8.7 | $x^{6} + 6 x^{5} + 6 x^{3} + 72$ | $3$ | $2$ | $8$ | $S_3\times C_3$ | $[2]^{6}$ | |
| 3.6.0.1 | $x^{6} - x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| $151$ | $\Q_{151}$ | $x + 5$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 151.2.1.2 | $x^{2} + 755$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 151.2.1.2 | $x^{2} + 755$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 151.2.1.2 | $x^{2} + 755$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 151.2.1.2 | $x^{2} + 755$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 151.2.1.2 | $x^{2} + 755$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 151.2.1.2 | $x^{2} + 755$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 151.2.1.2 | $x^{2} + 755$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 151.6.3.2 | $x^{6} - 22801 x^{2} + 17214755$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |