Normalized defining polynomial
\( x^{21} - 4 x^{20} + 15 x^{19} - 38 x^{18} + 87 x^{17} - 166 x^{16} + 291 x^{15} - 534 x^{14} + 954 x^{13} - 1218 x^{12} + 1775 x^{11} - 1990 x^{10} + 2612 x^{9} - 2193 x^{8} + 2151 x^{7} - 1538 x^{6} + 990 x^{5} - 641 x^{4} + 574 x^{3} + 439 x^{2} + 407 x + 169 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[1, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(265283078340996577927735640721=3^{16}\cdot 151^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $25.18$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 151$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{3} a^{15} - \frac{1}{3} a^{14} + \frac{1}{3} a^{11} - \frac{1}{3} a^{10} + \frac{1}{3} a^{9} + \frac{1}{3} a^{8} + \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{3} a^{16} - \frac{1}{3} a^{14} + \frac{1}{3} a^{12} - \frac{1}{3} a^{9} - \frac{1}{3} a^{8} + \frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3}$, $\frac{1}{3} a^{17} - \frac{1}{3} a^{14} + \frac{1}{3} a^{13} + \frac{1}{3} a^{11} + \frac{1}{3} a^{10} + \frac{1}{3} a^{8} - \frac{1}{3} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3}$, $\frac{1}{3} a^{18} + \frac{1}{3} a^{12} - \frac{1}{3} a^{11} - \frac{1}{3} a^{10} - \frac{1}{3} a^{9} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{2} - \frac{1}{3}$, $\frac{1}{21} a^{19} + \frac{1}{7} a^{18} + \frac{1}{21} a^{16} + \frac{1}{7} a^{15} + \frac{8}{21} a^{14} + \frac{1}{21} a^{13} - \frac{1}{7} a^{12} + \frac{8}{21} a^{11} - \frac{4}{21} a^{10} - \frac{4}{21} a^{9} - \frac{5}{21} a^{8} + \frac{5}{21} a^{7} + \frac{1}{7} a^{6} - \frac{1}{7} a^{5} - \frac{8}{21} a^{4} - \frac{1}{21} a^{3} - \frac{1}{7} a^{2} + \frac{8}{21} a + \frac{8}{21}$, $\frac{1}{1840290759774423389278390226104059} a^{20} + \frac{11777053932759826488651884950080}{613430253258141129759463408701353} a^{19} + \frac{20419705765010446787851921103260}{262898679967774769896912889443437} a^{18} + \frac{161102298692157860672009974120495}{1840290759774423389278390226104059} a^{17} + \frac{273972046559658380509669070079217}{1840290759774423389278390226104059} a^{16} + \frac{83450515491248972701899101569817}{1840290759774423389278390226104059} a^{15} + \frac{270936554665307853938164178085167}{613430253258141129759463408701353} a^{14} - \frac{91176647243903541278853258984467}{613430253258141129759463408701353} a^{13} + \frac{608666625538626455960625681629086}{1840290759774423389278390226104059} a^{12} + \frac{44935027364294732579053374278872}{1840290759774423389278390226104059} a^{11} - \frac{26581772396304430330248272614421}{141560827674955645329106940469543} a^{10} - \frac{24870460906327915484067808572175}{1840290759774423389278390226104059} a^{9} + \frac{190797158022911514734140453362703}{1840290759774423389278390226104059} a^{8} - \frac{657934767202778290063049709609031}{1840290759774423389278390226104059} a^{7} - \frac{3538056765060255179523135839766}{613430253258141129759463408701353} a^{6} + \frac{260669258405306698817248052472245}{1840290759774423389278390226104059} a^{5} - \frac{455580243079857449167656302784623}{1840290759774423389278390226104059} a^{4} - \frac{224338555893311943235726208484599}{613430253258141129759463408701353} a^{3} + \frac{694850486457562961442534728831764}{1840290759774423389278390226104059} a^{2} + \frac{775711096223637771465997888137539}{1840290759774423389278390226104059} a - \frac{5155892827711109892243524745533}{20222975382136520761300991495649}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2451809.3877 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 30618 |
| The 207 conjugacy class representatives for t21n75 are not computed |
| Character table for t21n75 is not computed |
Intermediate fields
| 7.1.3442951.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $21$ | R | $21$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | $21$ | ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | $21$ | $21$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | $21$ | $21$ | ${\href{/LocalNumberField/37.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | $21$ | $21$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | $21$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 3.6.8.6 | $x^{6} + 18 x^{2} + 36$ | $3$ | $2$ | $8$ | $C_6$ | $[2]^{2}$ | |
| 3.6.8.9 | $x^{6} + 6 x^{5} + 9$ | $3$ | $2$ | $8$ | $S_3\times C_3$ | $[2, 2]^{2}$ | |
| 3.6.0.1 | $x^{6} - x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| $151$ | $\Q_{151}$ | $x + 5$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 151.2.1.2 | $x^{2} + 755$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 151.2.1.2 | $x^{2} + 755$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 151.2.1.2 | $x^{2} + 755$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 151.2.1.2 | $x^{2} + 755$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 151.6.3.2 | $x^{6} - 22801 x^{2} + 17214755$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 151.6.3.2 | $x^{6} - 22801 x^{2} + 17214755$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |