Properties

Label 21.1.242...448.1
Degree $21$
Signature $[1, 10]$
Discriminant $2.421\times 10^{33}$
Root discriminant \(38.88\)
Ramified primes $2,11,283,6311$
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $D_7\wr S_3$ (as 21T62)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^21 - 6*x^20 + 16*x^19 - 26*x^18 + 29*x^17 - 36*x^16 + 50*x^15 - 50*x^14 + 35*x^13 - 14*x^12 + 100*x^11 - 22*x^10 - 25*x^9 - 112*x^8 - 78*x^7 - 286*x^6 - 632*x^5 - 1000*x^4 - 1000*x^3 - 688*x^2 - 288*x - 64)
 
gp: K = bnfinit(y^21 - 6*y^20 + 16*y^19 - 26*y^18 + 29*y^17 - 36*y^16 + 50*y^15 - 50*y^14 + 35*y^13 - 14*y^12 + 100*y^11 - 22*y^10 - 25*y^9 - 112*y^8 - 78*y^7 - 286*y^6 - 632*y^5 - 1000*y^4 - 1000*y^3 - 688*y^2 - 288*y - 64, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^21 - 6*x^20 + 16*x^19 - 26*x^18 + 29*x^17 - 36*x^16 + 50*x^15 - 50*x^14 + 35*x^13 - 14*x^12 + 100*x^11 - 22*x^10 - 25*x^9 - 112*x^8 - 78*x^7 - 286*x^6 - 632*x^5 - 1000*x^4 - 1000*x^3 - 688*x^2 - 288*x - 64);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^21 - 6*x^20 + 16*x^19 - 26*x^18 + 29*x^17 - 36*x^16 + 50*x^15 - 50*x^14 + 35*x^13 - 14*x^12 + 100*x^11 - 22*x^10 - 25*x^9 - 112*x^8 - 78*x^7 - 286*x^6 - 632*x^5 - 1000*x^4 - 1000*x^3 - 688*x^2 - 288*x - 64)
 

\( x^{21} - 6 x^{20} + 16 x^{19} - 26 x^{18} + 29 x^{17} - 36 x^{16} + 50 x^{15} - 50 x^{14} + 35 x^{13} + \cdots - 64 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $21$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[1, 10]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(2421032603211455207440720697704448\) \(\medspace = 2^{14}\cdot 11^{10}\cdot 283^{3}\cdot 6311^{3}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(38.88\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2^{2/3}11^{3/4}283^{1/2}6311^{1/2}\approx 12813.668536692152$
Ramified primes:   \(2\), \(11\), \(283\), \(6311\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{1786013}) \)
$\card{ \Aut(K/\Q) }$:  $1$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2}a^{6}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}$, $\frac{1}{2}a^{7}-\frac{1}{2}a^{3}$, $\frac{1}{2}a^{8}-\frac{1}{2}a^{4}$, $\frac{1}{2}a^{9}-\frac{1}{2}a^{5}$, $\frac{1}{4}a^{10}-\frac{1}{4}a^{9}-\frac{1}{4}a^{6}+\frac{1}{4}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a^{2}$, $\frac{1}{4}a^{11}-\frac{1}{4}a^{9}-\frac{1}{4}a^{7}-\frac{1}{4}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}$, $\frac{1}{8}a^{12}-\frac{1}{8}a^{10}-\frac{1}{4}a^{9}-\frac{1}{8}a^{8}-\frac{1}{8}a^{6}-\frac{1}{2}a^{5}-\frac{1}{4}a^{4}-\frac{1}{4}a^{3}-\frac{1}{2}a^{2}$, $\frac{1}{8}a^{13}-\frac{1}{8}a^{11}+\frac{1}{8}a^{9}-\frac{1}{8}a^{7}-\frac{1}{4}a^{6}-\frac{1}{4}a^{4}-\frac{1}{2}a^{2}$, $\frac{1}{16}a^{14}-\frac{1}{16}a^{13}-\frac{1}{16}a^{12}-\frac{1}{16}a^{11}+\frac{1}{16}a^{10}-\frac{3}{16}a^{9}+\frac{3}{16}a^{8}-\frac{3}{16}a^{7}+\frac{1}{8}a^{6}+\frac{1}{4}a^{5}-\frac{3}{8}a^{4}+\frac{1}{4}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a$, $\frac{1}{16}a^{15}-\frac{1}{8}a^{11}+\frac{1}{8}a^{9}-\frac{1}{8}a^{8}-\frac{3}{16}a^{7}-\frac{1}{4}a^{6}+\frac{1}{8}a^{5}-\frac{1}{8}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a$, $\frac{1}{32}a^{16}-\frac{1}{16}a^{12}+\frac{1}{16}a^{10}+\frac{3}{16}a^{9}+\frac{5}{32}a^{8}+\frac{1}{8}a^{7}-\frac{3}{16}a^{6}-\frac{1}{16}a^{5}-\frac{1}{4}a^{4}+\frac{1}{4}a^{3}+\frac{1}{4}a^{2}-\frac{1}{2}a$, $\frac{1}{32}a^{17}-\frac{1}{16}a^{13}+\frac{1}{16}a^{11}-\frac{1}{16}a^{10}-\frac{3}{32}a^{9}+\frac{1}{8}a^{8}-\frac{3}{16}a^{7}+\frac{3}{16}a^{6}-\frac{1}{4}a^{4}+\frac{1}{4}a^{3}$, $\frac{1}{128}a^{18}+\frac{1}{128}a^{17}-\frac{1}{32}a^{15}+\frac{1}{64}a^{14}-\frac{3}{64}a^{13}+\frac{3}{64}a^{12}+\frac{3}{32}a^{11}+\frac{7}{128}a^{10}-\frac{27}{128}a^{9}+\frac{13}{64}a^{8}-\frac{1}{16}a^{7}-\frac{13}{64}a^{6}-\frac{3}{16}a^{5}-\frac{1}{4}a^{4}+\frac{7}{16}a^{3}+\frac{3}{8}a^{2}+\frac{1}{4}a-\frac{1}{2}$, $\frac{1}{256}a^{19}+\frac{3}{256}a^{17}+\frac{3}{128}a^{15}-\frac{1}{32}a^{14}+\frac{1}{64}a^{13}-\frac{1}{128}a^{12}+\frac{3}{256}a^{11}-\frac{1}{128}a^{10}+\frac{33}{256}a^{9}+\frac{1}{128}a^{8}-\frac{13}{128}a^{7}-\frac{15}{128}a^{6}+\frac{1}{16}a^{5}+\frac{11}{32}a^{4}-\frac{9}{32}a^{3}+\frac{5}{16}a^{2}-\frac{1}{8}a-\frac{1}{4}$, $\frac{1}{1024}a^{20}-\frac{1}{1024}a^{19}+\frac{3}{1024}a^{18}-\frac{11}{1024}a^{17}+\frac{7}{512}a^{16}-\frac{15}{512}a^{15}-\frac{5}{256}a^{14}+\frac{21}{512}a^{13}-\frac{43}{1024}a^{12}+\frac{43}{1024}a^{11}+\frac{35}{1024}a^{10}-\frac{215}{1024}a^{9}-\frac{5}{256}a^{8}+\frac{23}{256}a^{7}+\frac{103}{512}a^{6}+\frac{27}{128}a^{5}-\frac{5}{16}a^{4}-\frac{29}{128}a^{3}+\frac{29}{64}a^{2}+\frac{15}{32}a+\frac{5}{16}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $2$

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $10$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{173}{1024}a^{20}-\frac{1025}{1024}a^{19}+\frac{2623}{1024}a^{18}-\frac{3827}{1024}a^{17}+\frac{1595}{512}a^{16}-\frac{1391}{512}a^{15}+\frac{883}{256}a^{14}-\frac{767}{512}a^{13}-\frac{3543}{1024}a^{12}+\frac{9075}{1024}a^{11}+\frac{5399}{1024}a^{10}+\frac{8185}{1024}a^{9}-\frac{4975}{256}a^{8}-\frac{1411}{256}a^{7}-\frac{12049}{512}a^{6}-\frac{4577}{128}a^{5}-\frac{3689}{32}a^{4}-\frac{20061}{128}a^{3}-\frac{10051}{64}a^{2}-\frac{2833}{32}a-\frac{483}{16}$, $\frac{55}{64}a^{20}-\frac{777}{128}a^{19}+\frac{159}{8}a^{18}-\frac{5257}{128}a^{17}+\frac{1933}{32}a^{16}-\frac{4959}{64}a^{15}+\frac{3135}{32}a^{14}-\frac{3547}{32}a^{13}+\frac{815}{8}a^{12}-\frac{8647}{128}a^{11}+\frac{6849}{64}a^{10}-\frac{12195}{128}a^{9}+\frac{1935}{64}a^{8}-\frac{5249}{64}a^{7}-\frac{83}{64}a^{6}-\frac{1653}{8}a^{5}-\frac{5289}{16}a^{4}-\frac{6845}{16}a^{3}-\frac{2343}{8}a^{2}-\frac{537}{4}a-\frac{35}{2}$, $\frac{657}{1024}a^{20}-\frac{3081}{1024}a^{19}+\frac{4843}{1024}a^{18}-\frac{1163}{1024}a^{17}-\frac{2361}{512}a^{16}-\frac{4247}{512}a^{15}+\frac{8551}{256}a^{14}-\frac{16755}{512}a^{13}+\frac{14437}{1024}a^{12}-\frac{12141}{1024}a^{11}+\frac{100107}{1024}a^{10}+\frac{26041}{1024}a^{9}-\frac{20237}{256}a^{8}-\frac{28989}{256}a^{7}-\frac{24633}{512}a^{6}-\frac{27221}{128}a^{5}-607a^{4}-\frac{128493}{128}a^{3}-\frac{64915}{64}a^{2}-\frac{18545}{32}a-\frac{2427}{16}$, $\frac{321}{1024}a^{20}-\frac{1833}{1024}a^{19}+\frac{4331}{1024}a^{18}-\frac{5083}{1024}a^{17}+\frac{439}{512}a^{16}+\frac{2153}{512}a^{15}-\frac{2097}{256}a^{14}+\frac{8877}{512}a^{13}-\frac{30763}{1024}a^{12}+\frac{40531}{1024}a^{11}-\frac{8501}{1024}a^{10}+\frac{31177}{1024}a^{9}-\frac{11885}{256}a^{8}-\frac{1957}{256}a^{7}-\frac{24809}{512}a^{6}-\frac{8517}{128}a^{5}-\frac{1827}{8}a^{4}-\frac{39805}{128}a^{3}-\frac{20195}{64}a^{2}-\frac{5825}{32}a-\frac{971}{16}$, $\frac{223}{256}a^{20}-\frac{703}{128}a^{19}+\frac{3937}{256}a^{18}-\frac{3307}{128}a^{17}+\frac{3689}{128}a^{16}-\frac{2079}{64}a^{15}+\frac{2777}{64}a^{14}-\frac{5359}{128}a^{13}+\frac{4817}{256}a^{12}+\frac{397}{32}a^{11}+\frac{14583}{256}a^{10}-\frac{1179}{64}a^{9}-\frac{6937}{128}a^{8}-\frac{6659}{128}a^{7}-\frac{3129}{64}a^{6}-\frac{6849}{32}a^{5}-\frac{15813}{32}a^{4}-\frac{1295}{2}a^{3}-\frac{2203}{4}a^{2}-\frac{561}{2}a-\frac{143}{2}$, $\frac{35045}{1024}a^{20}-\frac{241925}{1024}a^{19}+\frac{768903}{1024}a^{18}-\frac{1530271}{1024}a^{17}+\frac{1071107}{512}a^{16}-\frac{1322555}{512}a^{15}+\frac{823699}{256}a^{14}-\frac{1809727}{512}a^{13}+\frac{3095001}{1024}a^{12}-\frac{1677641}{1024}a^{11}+\frac{3487479}{1024}a^{10}-\frac{2839931}{1024}a^{9}+\frac{63123}{256}a^{8}-\frac{691853}{256}a^{7}-\frac{418805}{512}a^{6}-\frac{1028321}{128}a^{5}-\frac{232297}{16}a^{4}-\frac{2392073}{128}a^{3}-\frac{896231}{64}a^{2}-\frac{214333}{32}a-\frac{21055}{16}$, $\frac{78905}{1024}a^{20}-\frac{554649}{1024}a^{19}+\frac{1804595}{1024}a^{18}-\frac{3700043}{1024}a^{17}+\frac{2695215}{512}a^{16}-\frac{3438471}{512}a^{15}+\frac{2177271}{256}a^{14}-\frac{4932939}{512}a^{13}+\frac{9034909}{1024}a^{12}-\frac{5908333}{1024}a^{11}+\frac{9638531}{1024}a^{10}-\frac{8499095}{1024}a^{9}+\frac{630759}{256}a^{8}-\frac{1838705}{256}a^{7}-\frac{220057}{512}a^{6}-\frac{2374053}{128}a^{5}-\frac{482535}{16}a^{4}-\frac{5006781}{128}a^{3}-\frac{1750483}{64}a^{2}-\frac{406961}{32}a-\frac{30139}{16}$, $\frac{45}{64}a^{20}-\frac{297}{64}a^{19}+\frac{55}{4}a^{18}-\frac{789}{32}a^{17}+\frac{477}{16}a^{16}-\frac{1105}{32}a^{15}+\frac{1531}{32}a^{14}-\frac{909}{16}a^{13}+\frac{2899}{64}a^{12}-\frac{953}{64}a^{11}+\frac{1885}{32}a^{10}-\frac{1435}{32}a^{9}-\frac{231}{16}a^{8}-\frac{683}{16}a^{7}-\frac{221}{8}a^{6}-\frac{2739}{16}a^{5}-339a^{4}-\frac{1691}{4}a^{3}-\frac{1299}{4}a^{2}-\frac{307}{2}a-35$, $\frac{1627}{1024}a^{20}-\frac{9627}{1024}a^{19}+\frac{24377}{1024}a^{18}-\frac{34177}{1024}a^{17}+\frac{11965}{512}a^{16}-\frac{6309}{512}a^{15}+\frac{2813}{256}a^{14}+\frac{6879}{512}a^{13}-\frac{62873}{1024}a^{12}+\frac{110377}{1024}a^{11}+\frac{32969}{1024}a^{10}+\frac{85339}{1024}a^{9}-\frac{48243}{256}a^{8}-\frac{16595}{256}a^{7}-\frac{98667}{512}a^{6}-\frac{43839}{128}a^{5}-\frac{17077}{16}a^{4}-\frac{187863}{128}a^{3}-\frac{89657}{64}a^{2}-\frac{23987}{32}a-\frac{3697}{16}$, $\frac{65}{64}a^{20}-\frac{219}{32}a^{19}+\frac{673}{32}a^{18}-\frac{2557}{64}a^{17}+\frac{1673}{32}a^{16}-\frac{975}{16}a^{15}+\frac{2367}{32}a^{14}-\frac{1223}{16}a^{13}+\frac{3501}{64}a^{12}-\frac{99}{8}a^{11}+\frac{2291}{32}a^{10}-\frac{3135}{64}a^{9}-\frac{213}{8}a^{8}-\frac{1923}{32}a^{7}-\frac{1403}{32}a^{6}-\frac{927}{4}a^{5}-\frac{3783}{8}a^{4}-\frac{4769}{8}a^{3}-\frac{1877}{4}a^{2}-\frac{451}{2}a-52$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 19772231044.3 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{1}\cdot(2\pi)^{10}\cdot 19772231044.3 \cdot 1}{2\cdot\sqrt{2421032603211455207440720697704448}}\cr\approx \mathstrut & 38.5348826943 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^21 - 6*x^20 + 16*x^19 - 26*x^18 + 29*x^17 - 36*x^16 + 50*x^15 - 50*x^14 + 35*x^13 - 14*x^12 + 100*x^11 - 22*x^10 - 25*x^9 - 112*x^8 - 78*x^7 - 286*x^6 - 632*x^5 - 1000*x^4 - 1000*x^3 - 688*x^2 - 288*x - 64)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^21 - 6*x^20 + 16*x^19 - 26*x^18 + 29*x^17 - 36*x^16 + 50*x^15 - 50*x^14 + 35*x^13 - 14*x^12 + 100*x^11 - 22*x^10 - 25*x^9 - 112*x^8 - 78*x^7 - 286*x^6 - 632*x^5 - 1000*x^4 - 1000*x^3 - 688*x^2 - 288*x - 64, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^21 - 6*x^20 + 16*x^19 - 26*x^18 + 29*x^17 - 36*x^16 + 50*x^15 - 50*x^14 + 35*x^13 - 14*x^12 + 100*x^11 - 22*x^10 - 25*x^9 - 112*x^8 - 78*x^7 - 286*x^6 - 632*x^5 - 1000*x^4 - 1000*x^3 - 688*x^2 - 288*x - 64);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^21 - 6*x^20 + 16*x^19 - 26*x^18 + 29*x^17 - 36*x^16 + 50*x^15 - 50*x^14 + 35*x^13 - 14*x^12 + 100*x^11 - 22*x^10 - 25*x^9 - 112*x^8 - 78*x^7 - 286*x^6 - 632*x^5 - 1000*x^4 - 1000*x^3 - 688*x^2 - 288*x - 64);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$D_7\wr S_3$ (as 21T62):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 16464
The 65 conjugacy class representatives for $D_7\wr S_3$
Character table for $D_7\wr S_3$

Intermediate fields

3.1.44.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 28 sibling: data not computed
Degree 42 siblings: data not computed
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R ${\href{/padicField/3.6.0.1}{6} }^{3}{,}\,{\href{/padicField/3.3.0.1}{3} }$ ${\href{/padicField/5.6.0.1}{6} }^{3}{,}\,{\href{/padicField/5.3.0.1}{3} }$ ${\href{/padicField/7.4.0.1}{4} }^{3}{,}\,{\href{/padicField/7.2.0.1}{2} }^{4}{,}\,{\href{/padicField/7.1.0.1}{1} }$ R ${\href{/padicField/13.4.0.1}{4} }^{3}{,}\,{\href{/padicField/13.2.0.1}{2} }^{4}{,}\,{\href{/padicField/13.1.0.1}{1} }$ ${\href{/padicField/17.14.0.1}{14} }{,}\,{\href{/padicField/17.7.0.1}{7} }$ ${\href{/padicField/19.14.0.1}{14} }{,}\,{\href{/padicField/19.7.0.1}{7} }$ ${\href{/padicField/23.6.0.1}{6} }^{3}{,}\,{\href{/padicField/23.3.0.1}{3} }$ ${\href{/padicField/29.14.0.1}{14} }{,}\,{\href{/padicField/29.7.0.1}{7} }$ $21$ ${\href{/padicField/37.6.0.1}{6} }^{3}{,}\,{\href{/padicField/37.3.0.1}{3} }$ ${\href{/padicField/41.14.0.1}{14} }{,}\,{\href{/padicField/41.7.0.1}{7} }$ ${\href{/padicField/43.4.0.1}{4} }^{3}{,}\,{\href{/padicField/43.2.0.1}{2} }^{4}{,}\,{\href{/padicField/43.1.0.1}{1} }$ ${\href{/padicField/47.2.0.1}{2} }^{9}{,}\,{\href{/padicField/47.1.0.1}{1} }^{3}$ ${\href{/padicField/53.2.0.1}{2} }^{9}{,}\,{\href{/padicField/53.1.0.1}{1} }^{3}$ ${\href{/padicField/59.6.0.1}{6} }^{3}{,}\,{\href{/padicField/59.3.0.1}{3} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.3.2.1$x^{3} + 2$$3$$1$$2$$S_3$$[\ ]_{3}^{2}$
2.3.2.1$x^{3} + 2$$3$$1$$2$$S_3$$[\ ]_{3}^{2}$
2.3.2.1$x^{3} + 2$$3$$1$$2$$S_3$$[\ ]_{3}^{2}$
2.3.2.1$x^{3} + 2$$3$$1$$2$$S_3$$[\ ]_{3}^{2}$
2.3.2.1$x^{3} + 2$$3$$1$$2$$S_3$$[\ ]_{3}^{2}$
2.3.2.1$x^{3} + 2$$3$$1$$2$$S_3$$[\ ]_{3}^{2}$
2.3.2.1$x^{3} + 2$$3$$1$$2$$S_3$$[\ ]_{3}^{2}$
\(11\) Copy content Toggle raw display $\Q_{11}$$x + 9$$1$$1$$0$Trivial$[\ ]$
11.2.0.1$x^{2} + 7 x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
11.2.1.2$x^{2} + 11$$2$$1$$1$$C_2$$[\ ]_{2}$
11.2.0.1$x^{2} + 7 x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
11.2.0.1$x^{2} + 7 x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
11.4.3.1$x^{4} + 11$$4$$1$$3$$D_{4}$$[\ ]_{4}^{2}$
11.4.3.1$x^{4} + 11$$4$$1$$3$$D_{4}$$[\ ]_{4}^{2}$
11.4.3.1$x^{4} + 11$$4$$1$$3$$D_{4}$$[\ ]_{4}^{2}$
\(283\) Copy content Toggle raw display $\Q_{283}$$x$$1$$1$$0$Trivial$[\ ]$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $14$$1$$14$$0$$C_{14}$$[\ ]^{14}$
\(6311\) Copy content Toggle raw display $\Q_{6311}$$x$$1$$1$$0$Trivial$[\ ]$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $14$$1$$14$$0$$C_{14}$$[\ ]^{14}$