\\ Pari/GP code for working with number field 21.1.238583305854552412020101.1 \\ Some of these functions may take a long time to execute (this depends on the field). \\ Define the number field: K = bnfinit(y^21 - 6*y^18 - 6*y^16 + 8*y^15 - 8*y^14 + 17*y^13 - 3*y^12 + 23*y^11 - 28*y^10 - 11*y^9 - 45*y^8 - 14*y^7 - 44*y^6 - 17*y^5 - 21*y^4 - 4*y^3 - 8*y^2 - 1, 1) \\ Defining polynomial: K.pol \\ Degree over Q: poldegree(K.pol) \\ Signature: K.sign \\ Discriminant: K.disc \\ Ramified primes: factor(abs(K.disc))[,1]~ \\ Integral basis: K.zk \\ Class group: K.clgp \\ Unit rank: K.fu \\ Generator for roots of unity: K.tu[2] \\ Fundamental units: K.fu \\ Regulator: K.reg \\ Analytic class number formula: # self-contained Pari/GP code snippet to compute the analytic class number formula K = bnfinit(x^21 - 6*x^18 - 6*x^16 + 8*x^15 - 8*x^14 + 17*x^13 - 3*x^12 + 23*x^11 - 28*x^10 - 11*x^9 - 45*x^8 - 14*x^7 - 44*x^6 - 17*x^5 - 21*x^4 - 4*x^3 - 8*x^2 - 1, 1); [polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))] \\ Intermediate fields: L = nfsubfields(K); L[2..length(b)] \\ Galois group: polgalois(K.pol) \\ Frobenius cycle types: \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari: p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])