Normalized defining polynomial
\( x^{21} - 7 x^{20} - 133 x^{19} + 287 x^{18} + 11501 x^{17} + 22673 x^{16} - 503307 x^{15} - 2971235 x^{14} + 7171822 x^{13} + 123851322 x^{12} + 289386524 x^{11} - 1890715204 x^{10} - 13338735312 x^{9} - 15880653152 x^{8} + 150044092120 x^{7} + 784511093184 x^{6} + 1150521936032 x^{5} - 3757986589840 x^{4} - 22166544339184 x^{3} - 50296288035280 x^{2} - 61556969399632 x - 35029115785232 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[1, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(23799537214144544855987852949932308494594769678441899396662782058299392=2^{33}\cdot 3^{18}\cdot 7^{40}\cdot 379^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $2245.25$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 379$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{7}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{5}$, $\frac{1}{588} a^{14} + \frac{5}{28} a^{13} + \frac{11}{84} a^{12} - \frac{1}{28} a^{11} + \frac{3}{28} a^{10} + \frac{1}{28} a^{9} - \frac{5}{84} a^{8} - \frac{9}{196} a^{7} - \frac{10}{21} a^{6} - \frac{3}{14} a^{5} + \frac{5}{14} a^{4} - \frac{2}{7} a^{3} + \frac{1}{21} a^{2} + \frac{3}{7} a - \frac{40}{147}$, $\frac{1}{1764} a^{15} - \frac{1}{1764} a^{14} + \frac{59}{252} a^{13} + \frac{7}{36} a^{12} - \frac{17}{84} a^{11} + \frac{5}{84} a^{10} + \frac{13}{252} a^{9} - \frac{139}{1764} a^{8} - \frac{16}{441} a^{7} - \frac{5}{63} a^{6} - \frac{10}{21} a^{5} - \frac{1}{21} a^{4} - \frac{2}{9} a^{3} + \frac{8}{63} a^{2} + \frac{191}{441} a - \frac{170}{441}$, $\frac{1}{1764} a^{16} + \frac{1}{1764} a^{14} - \frac{1}{28} a^{13} + \frac{13}{252} a^{12} - \frac{1}{4} a^{11} - \frac{17}{252} a^{10} + \frac{47}{588} a^{9} + \frac{5}{126} a^{8} + \frac{103}{588} a^{7} + \frac{23}{126} a^{6} - \frac{1}{6} a^{5} - \frac{25}{126} a^{4} + \frac{1}{21} a^{3} + \frac{16}{441} a^{2} + \frac{1}{3} a - \frac{47}{441}$, $\frac{1}{3528} a^{17} - \frac{1}{3528} a^{16} - \frac{1}{3528} a^{15} + \frac{1}{3528} a^{14} + \frac{31}{168} a^{13} - \frac{37}{168} a^{12} + \frac{85}{504} a^{11} + \frac{491}{3528} a^{10} + \frac{47}{882} a^{9} - \frac{403}{1764} a^{8} + \frac{181}{588} a^{7} + \frac{17}{42} a^{6} - \frac{5}{126} a^{5} + \frac{53}{126} a^{4} + \frac{191}{882} a^{3} - \frac{211}{441} a^{2} + \frac{17}{49} a + \frac{4}{49}$, $\frac{1}{3528} a^{18} - \frac{1}{28} a^{13} + \frac{19}{84} a^{12} - \frac{29}{588} a^{11} - \frac{3}{56} a^{10} + \frac{1}{84} a^{9} + \frac{3}{28} a^{8} - \frac{3}{28} a^{7} - \frac{1}{21} a^{6} + \frac{1}{14} a^{5} - \frac{24}{49} a^{4} - \frac{1}{14} a^{3} - \frac{2}{7} a^{2} + \frac{1}{21} a - \frac{23}{63}$, $\frac{1}{24696} a^{19} - \frac{1}{8232} a^{18} - \frac{1}{12348} a^{17} + \frac{1}{6174} a^{16} - \frac{1}{6174} a^{15} - \frac{1}{1372} a^{14} - \frac{31}{294} a^{13} + \frac{400}{3087} a^{12} + \frac{25}{24696} a^{11} - \frac{5399}{24696} a^{10} - \frac{2651}{12348} a^{9} + \frac{233}{2058} a^{8} - \frac{787}{4116} a^{7} - \frac{80}{441} a^{6} - \frac{5}{6174} a^{5} - \frac{1259}{6174} a^{4} + \frac{311}{6174} a^{3} + \frac{163}{343} a^{2} + \frac{52}{3087} a - \frac{284}{3087}$, $\frac{1}{66681183793121508273901358054936890022263838974800488952176723674932007124086063545367373212788552} a^{20} - \frac{1016339344884395278435586589884374277477748252035221455503642931684098231923303660256871038779}{66681183793121508273901358054936890022263838974800488952176723674932007124086063545367373212788552} a^{19} + \frac{305930351088608922924913505561130032861503842140882646634798584203037654939364386073007319027}{7409020421457945363766817561659654446918204330533387661352969297214667458231784838374152579198728} a^{18} - \frac{223111577331752212204970168030449367312322442670850044402868082392951408286427403940237222007}{16670295948280377068475339513734222505565959743700122238044180918733001781021515886341843303197138} a^{17} - \frac{175201034908137418844819892289947315270370132607796806859448923946973878946735140275823165279}{2381470849754339581210762787676317500795137106242874605434882988390428825860216555191691900456734} a^{16} - \frac{867071592386720910464710224989331423375960349445825403498442808864100470299241772941054154685}{3704510210728972681883408780829827223459102165266693830676484648607333729115892419187076289599364} a^{15} - \frac{2871961394312348382016690754490728527276202563404048679247679738707010951950228561502742737683}{3704510210728972681883408780829827223459102165266693830676484648607333729115892419187076289599364} a^{14} + \frac{688436269648122130236714704617490285810715623834032032483687281765686208500972585848541681311442}{8335147974140188534237669756867111252782979871850061119022090459366500890510757943170921651598569} a^{13} + \frac{8935403212891875801761723563500054144682787403594906466496142625826691142020448884619445583978289}{66681183793121508273901358054936890022263838974800488952176723674932007124086063545367373212788552} a^{12} - \frac{6984227788401502758526810808406948622916665088403786888382276488191262536780411705829474170207867}{66681183793121508273901358054936890022263838974800488952176723674932007124086063545367373212788552} a^{11} - \frac{11437136113718010751363686482878739456832529687922503553421742503028151058642659234723132456445157}{66681183793121508273901358054936890022263838974800488952176723674932007124086063545367373212788552} a^{10} + \frac{28975354552509658346185230999932442575713088462845943383208558639699061916218756692518153694119}{264607872194926620134529198630701944532793011804763845048320332043380980651135172799076877828526} a^{9} - \frac{1680769101967902799040583654219024596850292822445373586691647940209479694850442111418800157872923}{11113530632186918045650226342489481670377306495800081492029453945822001187347677257561228868798092} a^{8} + \frac{5869864427145179734577504834154684212151719409364180201137218594866773345229832581803182420787689}{16670295948280377068475339513734222505565959743700122238044180918733001781021515886341843303197138} a^{7} - \frac{7611674571522226712181577089979758230620535770773919237708537766620398304857481793446155310397201}{16670295948280377068475339513734222505565959743700122238044180918733001781021515886341843303197138} a^{6} + \frac{7859892543245066651677463766521441050635337272538876864374557154645457967271047785351154019092089}{16670295948280377068475339513734222505565959743700122238044180918733001781021515886341843303197138} a^{5} - \frac{3314941562187923811942877562160256339478313230082068567823810156727681290927674204244704437419811}{16670295948280377068475339513734222505565959743700122238044180918733001781021515886341843303197138} a^{4} - \frac{892797324969357499964629325305547115520033644135072042712842227470365931093763768283587123695713}{1852255105364486340941704390414913611729551082633346915338242324303666864557946209593538144799682} a^{3} + \frac{250216281851039386761078733509385247526872489829882257823992224458799055137247200208223024110971}{1190735424877169790605381393838158750397568553121437302717441494195214412930108277595845950228367} a^{2} + \frac{256639988224422448252837226119385558384980367801677229436575697460128272670679214057077318378637}{2778382658046729511412556585622370417594326623950020373007363486455500296836919314390307217199523} a - \frac{3785071772151188847377398261509778526628654367559977038736907664594825162367286175147166337382625}{8335147974140188534237669756867111252782979871850061119022090459366500890510757943170921651598569}$
Class group and class number
Not computed
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$S_3\times F_7$ (as 21T15):
| A solvable group of order 252 |
| The 21 conjugacy class representatives for $S_3\times F_7$ |
| Character table for $S_3\times F_7$ is not computed |
Intermediate fields
| 3.1.21224.1, 7.1.4520453669548992.7 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{10}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | $21$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{10}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | ${\href{/LocalNumberField/43.14.0.1}{14} }{,}\,{\href{/LocalNumberField/43.7.0.1}{7} }$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.7.6.1 | $x^{7} - 2$ | $7$ | $1$ | $6$ | $C_7:C_3$ | $[\ ]_{7}^{3}$ |
| 2.14.27.21 | $x^{14} + 4 x^{12} + 4 x^{11} - 4 x^{10} + 8 x^{9} + 2 x^{8} + 8 x^{6} + 4 x^{5} - 4 x^{4} + 6 x^{2} - 4 x - 6$ | $14$ | $1$ | $27$ | $(C_7:C_3) \times C_2$ | $[3]_{7}^{3}$ | |
| $3$ | 3.7.6.1 | $x^{7} - 3$ | $7$ | $1$ | $6$ | $F_7$ | $[\ ]_{7}^{6}$ |
| 3.7.6.1 | $x^{7} - 3$ | $7$ | $1$ | $6$ | $F_7$ | $[\ ]_{7}^{6}$ | |
| 3.7.6.1 | $x^{7} - 3$ | $7$ | $1$ | $6$ | $F_7$ | $[\ ]_{7}^{6}$ | |
| $7$ | 7.7.13.6 | $x^{7} + 203$ | $7$ | $1$ | $13$ | $F_7$ | $[13/6]_{6}$ |
| 7.14.27.56 | $x^{14} + 49 x^{13} - 147 x^{12} - 49 x^{11} + 147 x^{10} - 49 x^{9} + 98 x^{8} - 42 x^{7} - 147 x^{6} + 147 x^{5} + 49 x^{3} + 49 x^{2} + 49 x - 42$ | $14$ | $1$ | $27$ | $F_7$ | $[13/6]_{6}$ | |
| 379 | Data not computed | ||||||