Normalized defining polynomial
\( x^{21} - 21173202 x^{14} + 164940880734306 x^{7} - 715092588417024 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[1, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(23354215149520145770884611145212717381599630651700115392847547465728=2^{26}\cdot 3^{19}\cdot 7^{17}\cdot 23^{19}\cdot 29^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $1614.42$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 23, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{3} a^{5}$, $\frac{1}{21} a^{6} - \frac{2}{21} a^{5} - \frac{1}{7} a^{4} + \frac{2}{7} a^{3} + \frac{3}{7} a^{2} + \frac{1}{7} a - \frac{2}{7}$, $\frac{1}{483} a^{7} - \frac{2}{7}$, $\frac{1}{483} a^{8} - \frac{2}{7} a$, $\frac{1}{483} a^{9} - \frac{2}{7} a^{2}$, $\frac{1}{1449} a^{10} - \frac{3}{7} a^{3}$, $\frac{1}{10143} a^{11} + \frac{1}{10143} a^{10} + \frac{1}{3381} a^{9} - \frac{1}{3381} a^{8} + \frac{1}{1127} a^{7} - \frac{24}{49} a^{4} - \frac{24}{49} a^{3} - \frac{23}{49} a^{2} + \frac{23}{49} a - \frac{20}{49}$, $\frac{1}{10143} a^{12} + \frac{2}{10143} a^{10} - \frac{2}{3381} a^{9} - \frac{1}{1127} a^{8} - \frac{1}{1127} a^{7} - \frac{23}{147} a^{5} + \frac{1}{49} a^{3} - \frac{3}{49} a^{2} + \frac{20}{49} a + \frac{20}{49}$, $\frac{1}{10143} a^{13} - \frac{1}{10143} a^{10} + \frac{2}{3381} a^{9} - \frac{1}{3381} a^{8} + \frac{1}{3381} a^{7} - \frac{2}{147} a^{6} + \frac{1}{21} a^{5} - \frac{3}{7} a^{4} + \frac{17}{49} a^{3} + \frac{17}{49} a^{2} - \frac{5}{49} a - \frac{16}{49}$, $\frac{1}{7929431553897882} a^{14} - \frac{3447700390}{6384405437921} a^{7} - \frac{7685980390}{277582845127}$, $\frac{1}{47576589323387292} a^{15} + \frac{29311590991}{114919297882578} a^{8} - \frac{364578209839}{1665497070762} a$, $\frac{1}{11989300509493597584} a^{16} - \frac{1}{111012041754570348} a^{15} + \frac{1}{18502006959095058} a^{14} - \frac{24953144470439}{28959663066409656} a^{9} - \frac{29311590991}{268145028392682} a^{8} + \frac{29311590991}{44690838065447} a^{7} - \frac{158586799932229}{419705261832024} a^{2} - \frac{1300918860923}{3886159831778} a + \frac{16596750991}{1943079915889}$, $\frac{1}{215807409170884756512} a^{17} - \frac{1}{111012041754570348} a^{15} - \frac{1}{18502006959095058} a^{14} + \frac{94962644624425}{521273935195373808} a^{10} - \frac{29311590991}{268145028392682} a^{8} - \frac{29311590991}{44690838065447} a^{7} + \frac{860697407374115}{7554694712976432} a^{3} - \frac{1300918860923}{3886159831778} a - \frac{16596750991}{1943079915889}$, $\frac{1}{59562844931164192797312} a^{18} - \frac{1}{166518062631855522} a^{15} + \frac{1}{18502006959095058} a^{14} - \frac{6637452371701511}{143871606113923171008} a^{11} + \frac{1}{3381} a^{10} + \frac{1}{1127} a^{9} - \frac{386203820440}{402217542589023} a^{8} - \frac{110338687832}{134072514196341} a^{7} + \frac{85195758795090611}{2085095740781495232} a^{4} - \frac{23}{49} a^{3} - \frac{20}{49} a^{2} + \frac{1078362668737}{5829239747667} a + \frac{690726517728}{1943079915889}$, $\frac{1}{1072131208760955470351616} a^{19} + \frac{1}{111012041754570348} a^{15} - \frac{1}{27753010438642587} a^{14} + \frac{35915521929961657}{2589688910050617078144} a^{12} + \frac{1}{3381} a^{10} - \frac{1}{1127} a^{9} - \frac{49997793331}{268145028392682} a^{8} - \frac{32759291381}{44690838065447} a^{7} + \frac{3276668831419828211}{37531723334066914176} a^{5} - \frac{23}{49} a^{3} + \frac{20}{49} a^{2} - \frac{761125131449}{3886159831778} a + \frac{253300113746}{1943079915889}$, $\frac{1}{38596723515394396932658176} a^{20} - \frac{1}{111012041754570348} a^{15} - \frac{1}{27753010438642587} a^{14} - \frac{3283216473599765447}{93228800761822214813184} a^{13} + \frac{1}{10143} a^{10} - \frac{2}{3381} a^{9} + \frac{49997793331}{268145028392682} a^{8} - \frac{32759291381}{44690838065447} a^{7} + \frac{11702157743149135475}{1351142040026408910336} a^{6} - \frac{1}{21} a^{5} + \frac{3}{7} a^{4} - \frac{17}{49} a^{3} - \frac{17}{49} a^{2} - \frac{904371939313}{3886159831778} a - \frac{24282731381}{1943079915889}$
Class group and class number
Not computed
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$S_3\times F_7$ (as 21T15):
| A solvable group of order 252 |
| The 21 conjugacy class representatives for $S_3\times F_7$ |
| Character table for $S_3\times F_7$ is not computed |
Intermediate fields
| 3.1.392196.1, 7.1.116081956281751488.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }$ | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | R | R | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }$ | ${\href{/LocalNumberField/43.14.0.1}{14} }{,}\,{\href{/LocalNumberField/43.7.0.1}{7} }$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.7.6.1 | $x^{7} - 2$ | $7$ | $1$ | $6$ | $C_7:C_3$ | $[\ ]_{7}^{3}$ |
| 2.14.20.8 | $x^{14} + 2 x^{13} + 2 x^{11} + 2 x^{8} + 2 x^{7} + 2 x^{6} + 2$ | $14$ | $1$ | $20$ | $(C_7:C_3) \times C_2$ | $[2]_{7}^{3}$ | |
| $3$ | 3.7.6.1 | $x^{7} - 3$ | $7$ | $1$ | $6$ | $F_7$ | $[\ ]_{7}^{6}$ |
| 3.14.13.2 | $x^{14} + 3$ | $14$ | $1$ | $13$ | $F_7 \times C_2$ | $[\ ]_{14}^{6}$ | |
| 7 | Data not computed | ||||||
| $23$ | 23.7.6.1 | $x^{7} - 23$ | $7$ | $1$ | $6$ | $C_7:C_3$ | $[\ ]_{7}^{3}$ |
| 23.14.13.2 | $x^{14} + 46$ | $14$ | $1$ | $13$ | $(C_7:C_3) \times C_2$ | $[\ ]_{14}^{3}$ | |
| $29$ | $\Q_{29}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{29}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{29}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{29}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{29}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{29}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{29}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 29.2.1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 29.2.1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 29.2.1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 29.2.1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 29.2.1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 29.2.1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 29.2.1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |